×

zbMATH — the first resource for mathematics

Generalized convexity in mathematical programming. (English) Zbl 0502.90066

MSC:
90C25 Convex programming
26B25 Convexity of real functions of several variables, generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/1009007 · Zbl 0164.06501
[2] Craven, Bull. Austral. Math. Soc. 24 pp 357– (1981)
[3] Craven, Generalized concavity in optimization and economics pp 473– (1981)
[4] Craven, Mathematical programming and control theory (1978)
[5] Chandra, Indian J. Pure Appl. Math. 3 pp 278– (1972)
[6] Tal, Generalized concavity in optimization and economics pp 301– (1981)
[7] DOI: 10.1007/BF00932539 · Zbl 0325.26007
[8] Avriel, Generalized concavity in optimization and economics pp 21– (1981)
[9] DOI: 10.1007/BF00935881 · Zbl 0238.90061
[10] DOI: 10.1007/BF01584551 · Zbl 0249.90063
[11] Avriel, Nonlinear programming, analysis and methods (1976) · Zbl 0361.90035
[12] Mond, Generalized concavity in optimization and economics pp 263– (1981)
[13] Mond, On duality with generalized convexity pp 80– (1980)
[14] Martos, Nonlinear programming: theory and methods (1975)
[15] Mangasarian, Nonlinear programming (1969)
[16] Lata, Indian J. Pure Appl. Math. 6 pp 45– (1976)
[17] Hardy, Inequalities (1959)
[18] Hanson, J. Inform. Optim. Sci. 3 pp 25– (1982)
[19] DOI: 10.1016/0022-247X(81)90123-2 · Zbl 0463.90080
[20] DOI: 10.1007/BF01917096 · Zbl 0491.90046
[21] Nehse, Math. Operationsforsch. Statist. 12 pp 483– (1981) · Zbl 0473.90071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.