×

zbMATH — the first resource for mathematics

Tilted algebras. (English) Zbl 0503.16024

MSC:
16Gxx Representation theory of associative rings and algebras
16P10 Finite rings and finite-dimensional associative algebras
16S50 Endomorphism rings; matrix rings
16E10 Homological dimension in associative algebras
16D90 Module categories in associative algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. IV. Invariants given by almost split sequences, Comm. Algebra 5 (1977), no. 5, 443 – 518. · Zbl 0396.16007
[2] M. Auslander and Sverre O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426 – 454. , https://doi.org/10.1016/0021-8693(81)90214-3 M. Auslander and Sverre O. Smalø, Addendum to: ”Almost split sequences in subcategories”, J. Algebra 71 (1981), no. 2, 592 – 594. · Zbl 0474.16022
[3] R. Bautista, Sections in Auslander-Reiten quivers, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin-New York, 1980, pp. 74 – 96. · Zbl 0446.16029
[4] -, Sections in Auslander-Reiten components. II (to appear). · Zbl 0532.16021
[5] R. Bautista, and F. Larrion, Auslander-Reiten quivers for certain algebras of finite representation type. · Zbl 0501.16030
[6] Sheila Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gel\(^{\prime}\)fand-Ponomarev reflection functors, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin-New York, 1980, pp. 103 – 169.
[7] Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. · Zbl 0332.16015
[8] Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1 – 71.
[9] D. Happel, Zur Darstellungstheorie von Köchern endlichen und zahmen Typs. Relative Invarianten und Subgenerische Orbiten, Dissertation, Bielefeld, 1980.
[10] Manabu Harada and Youshin Sai, On categories of indecomposable modules. I, Osaka J. Math. 7 (1970), 323 – 344. · Zbl 0248.18018
[11] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), no. 2, 199 – 224 (German). · Zbl 0444.16018
[12] Claus Michael Ringel, The rational invariants of the tame quivers, Invent. Math. 58 (1980), no. 3, 217 – 239. · Zbl 0433.15009
[13] -, Tame algebras, Lecture Notes in Math., vol. 831, Springer-Verlag, Berlin and New York, 1980, pp. 137-287.
[14] -, Report on the Brauer-Thrall conjecures: Rojter’s theorem and the theorem of Nazarova-Rojter, Lecture Notes in Math., vol. 831, Springer-Verlag, Berlin and New York, 1980, pp. 104-136.
[15] M. Auslander, Applications of morphisms determined by models. Representation theory of algebras, Lecture Notes in Pure and Appl. Math., vol. 37, Dekker, New York, 1978. · Zbl 0404.16007
[16] Maurice Auslander, María Inés Platzeck, and Idun Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1 – 46. · Zbl 0421.16016
[17] Klaus Bongartz and Claus Michael Ringel, Representation-finite tree algebras, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 39 – 54. · Zbl 0479.16024
[18] Dieter Happel and Claus Michael Ringel, Construction of tilted algebras, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 125 – 144. · Zbl 0503.16025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.