×

zbMATH — the first resource for mathematics

Transformation groups on homogeneous-rational manifolds. (English) Zbl 0503.32017

MSC:
32M05 Complex Lie groups, group actions on complex spaces
32M10 Homogeneous complex manifolds
22E10 General properties and structure of complex Lie groups
57S25 Groups acting on specific manifolds
14M20 Rational and unirational varieties
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc.85, 181-207 (1957) · Zbl 0078.16002 · doi:10.1090/S0002-9947-1957-0086359-5
[2] Bochner, S., Montgomery, D.: Groups on analytic manifolds. Ann. Math.48, 659-669 (1947) · Zbl 0030.07501 · doi:10.2307/1969133
[3] Borel, A.: K?hlerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. USA40, 1147-1151 (1954) · Zbl 0058.16002 · doi:10.1073/pnas.40.12.1147
[4] Borel, A., Remmert, R.: ?ber kompakte homogene K?hlersche Mannigfaltigkeiten. Math. Ann.145, 429-439 (1962) · Zbl 0111.18001 · doi:10.1007/BF01471087
[5] Bott, R.: Homogeneous vector bundles. Ann. Math.66, 203-248 (1957) · Zbl 0094.35701 · doi:10.2307/1969996
[6] Goto, M.: On algebraic homogeneous spaces. Am. J. Math.76, 811-818 (1954) · Zbl 0056.39803 · doi:10.2307/2372654
[7] Griffiths, P.A.: Some geometric and analytic properties of homogeneous complex manifolds. Part I: Sheaves and cohomology. Acta Math.110, 115-155 (1963) · Zbl 0171.44601 · doi:10.1007/BF02391857
[8] Humphreys, J.E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9, Berlin, Heidelberg, New York: Springer 1972 · Zbl 0254.17004
[9] Humphreys, J.E.: Linear Lie groups. Graduate Texts in Mathematics, 21, Berlin, Heidelberg, New York: Springer 1975 · Zbl 0325.20039
[10] Ise, M.: Some properties of complex analytic vector bundles over compact complex homogeneous manifolds. Osaka Math. J.12, 217-252 (1960) · Zbl 0108.36304
[11] Remmert, R., van de Ven, A.: Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology2, 137-157 (1963) · Zbl 0122.08602 · doi:10.1016/0040-9383(63)90029-6
[12] Serre, J.-P.: Lie algebras and Lie groups. New York: Benjamin 1966
[13] Steinsiek, M.: ?ber homogen-rationale Mannigfaltigkeiten. Schriftenr. Math. Inst. Univ. M?nster, 2. Serie, Bd. 23 (1982) · Zbl 0491.32025
[14] Tits, J.: Sur certaines classes d’espaces homog?nes de groupes de Lie. M?m. Acad. Roy. Belg.29, 1-268 (1955). · Zbl 0067.12301
[15] Tits, J.: Sur la trialit? et certains groupes qui s’en d?duisent. Publ. Math. IHES2, 13-60 (1959) · Zbl 0088.37204
[16] Tits, J.: Sur les groupes alg?briques affins, th?or?mes fondamentaux de structure, classification des groupes semi-simples et g?om?tries associ?es. C.I.M.E. Rome 1960 · Zbl 0116.38203
[17] Tits, J.: Espaces homog?nes complexes compacts. Comment. Math. Helv.37, 111-120 (1962) · Zbl 0108.36302 · doi:10.1007/BF02566965
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.