×

zbMATH — the first resource for mathematics

Representation of the solution of an equation of infinite order as a sum of two solutions. (English. Russian original) Zbl 0503.34010
Math. Notes 31, 125-131 (1982); translation from Mat. Zametki 31, 245-256 (1982).
MSC:
34A45 Theoretical approximation of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. V. Napalkov, ?Factorization of a convolution type operator,? Mat. Zametki,15, No. 1, 165-171 (1974). · Zbl 0335.42014
[2] A. F. Leont’ev, ?An application of the interpolation method,? Mat. Zametki,18, No. 5, 735-752 (1975).
[3] Yu. F. Korobeinik, ?On the solution of a differential equation of infinite order that are analytic in noncircular domains,? Mat. Sb.,71, No. 4, 535-544 (1966).
[4] G. Pólya, ?Eine Verallgemeinerung des Fabrysches Lückensatzes,? Nachr. Gesselsch. Wiss. Göttingen, Math.-Phys. Kl.,2, 187-195 (1927). · JFM 53.0286.05
[5] A. F. Leont’ev, Sequences of Polynomials in Exponential Functions [in Russian], Nauka, Moscow (1980).
[6] A. F. Leont’ev, Series of Exponential Functions [in Russian], Nauka, Moscow (1976).
[7] A. O. Gel’fond and A. F. Leont’ev, ?On a generalization of Fourier series,? Mat. Sb.,29, No. 3, 477-500 (1951).
[8] A. V. Bratishchev, ?A multiple interpolation problem in the spaces of entire functions,? Izv. Severo-Kavkazskogo Nauchn. Tsentra Vysshei Shkoly, Ser. Estestv. Nauk, No. 4, 39-42 (1976).
[9] B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1969). · Zbl 0188.37902
[10] C. O. Kiselman, ?Existence of entire functions of one variable with prescribed indicator,? Ark. Mat.,7, No. 6, 505-508 (1969). · Zbl 0169.40604 · doi:10.1007/BF02590887
[11] S. Kelleher and B. Taylor, ?An application of the corona theorem to some rings of entire functions,? Bull. Am. Math. Soc.,73, No. 2, 246-249 (1967). · Zbl 0154.15003 · doi:10.1090/S0002-9904-1967-11702-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.