×

An application of integral inequality to second order nonlinear oscillation. (English) Zbl 0503.34021


MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Butler, G. J., On the oscillatory behavior of a second order nonlinear differential equation, Ann. Mat. Pura Appl. (4), 105, 73-92 (1975) · Zbl 0307.34029
[2] Butler, G. J., Hille-Wintner type comparison theorems for second order ordinary differential equations, (Proc. Amer. Math. Soc., 76 (1979)), 51-59 · Zbl 0415.34032
[3] Erbe, L., Oscillation theorems for second order nonlinear differential equations, (Proc. Amer. Math. Soc., 24 (1970)), 811-814 · Zbl 0194.12102
[8] Olech, C.; Opial, Z.; Wazewski, T., Sur le problème d’oscillation des intégrales de l’equation \(y\)″ + \(q(t)y = 0\), Bull. Acad. Polon. Sci. Cl. III, 5, 621-626 (1957) · Zbl 0078.07701
[9] Onose, H., On oscillations of nonlinear second order equations, J. Math. Anal. Appl., 39, 122-124 (1972) · Zbl 0268.34042
[10] Walter, W., Differential and Integral Inequalities (1970), Springer-Verlag: Springer-Verlag Berlin/New York
[11] Waltman, P., An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Apl., 10, 439-441 (1965) · Zbl 0131.08902
[12] Willet, D., On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math., 21, 175-194 (1969) · Zbl 0174.13701
[13] Wintner, A., On the comparison theorem of Kneser-Hille, Math. Scand., 5, 255-260 (1957) · Zbl 0080.29801
[14] Wong, J. S.W, On two theorems of Waltman, SIAM J. Appl. Math., 14, 724-728 (1966) · Zbl 0145.33702
[15] Wong, J. S.W, Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Acad. Sinica, 3, 283-309 (1975) · Zbl 0316.34035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.