×

zbMATH — the first resource for mathematics

An imperfect conjugate gradient algorithm. (English) Zbl 0503.65017

MSC:
65F10 Iterative numerical methods for linear systems
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. R. Hestenes E. Stiefel: The method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards, 49 (1952), 409-436. · Zbl 0048.09901 · doi:10.6028/jres.049.044
[2] R. Fletcher C. M. Reeves: Function minimization by conjugate gradients. Comp. J., 2 (1964), 149-154. · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[3] E. Polak G. Ribiere: Note sur le Convergence des Methods de Directions Conjuges. Reone Fr. Int. Rech. Oper. 16R1 (1969), 35-43.
[4] J. W. Daniel: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4 (1967), 10-26. · Zbl 0154.40302 · doi:10.1137/0704002
[5] L. C. W. Dixon: Conjugate Gradient algorithms: Quadratic termination properties without line searches. J. of Inst. of Math. and Applics, 15 (1975), 9-18. · Zbl 0294.90076 · doi:10.1093/imamat/15.1.9
[6] L. Nazareth: A conjugate direction algorithm without line searches. JOTA, 3 (1977), 373 - 387. · Zbl 0348.65061 · doi:10.1007/BF00933447
[7] M. J. Best: A Method to Accelerate the Rate of Convergence of a Class of Optimization Algorithms. Math. Programming, 9 (1975) 139-160. · Zbl 0352.90053 · doi:10.1007/BF01681341
[8] J. Stoer: On the Relation between Quadratic Termination and Convergence Properties of Minimization Algorithms, Part I. Theory. Num. Math., 28 (1977) 343 - 366. · Zbl 0366.65027 · doi:10.1007/BF01389973 · eudml:132492
[9] P. Baptist J. Stoer: On the Relation between Quadratic Termination and Convergence Properties of Minimization Algorithms, Part II, Applications. Num. Math.,28 (1977), 367-391 · Zbl 0366.65028 · doi:10.1007/BF01404342 · eudml:132493
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.