A mixed finite element approximation of the Navier-Stokes equations. (English) Zbl 0503.76033


76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
35Q30 Navier-Stokes equations
Full Text: DOI EuDML


[1] Bercovier, M., Pironneau, O.: Estimation d’erreurs pour la résolution d’un probleme de Stokes en élements finis conformes de lagrange. CRAS Paris, T286A, p 1085-1087, 1977 · Zbl 0377.65055
[2] Brezzi, F.: On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrange multipliers. RAIRO Anal. Numer.8-R2, 129-151 (1974) · Zbl 0338.90047
[3] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North Holland, 1978 · Zbl 0383.65058
[4] Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite interpolation inR n , with applications to finite element methods. Arch. Rational Mech. Anal.46, 177-199 (1972) · Zbl 0243.41004
[5] Fortin, M.: Calcul numérique des écoulements des fluides de Bingham et des fluides Newtoniens incompressibles par la méthode des elements finis. Thèse d’Etat, Université Pierre et Marie Curie, 1972
[6] Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equations. Berlin Heidelberg New York: Springer, 1979 · Zbl 0413.65081
[7] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes problem. (I) Convergence of the approximate solutions. Numer. Math.33, 397-424 (1979) · Zbl 0423.65059
[8] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes problem. (II) Solution of the approximate problems. Numer. Math. (in press, 1980) · Zbl 0423.65059
[9] Glowinski, R., Pironneau, O.: On numerical methods for the Stokes problem. Chapter 13 in: Energy methods in finite element analysis. (R. Glowinski, F.Y. Rodin, O.D. Zinkiewicz, eds.) Chichester: John Wiley, 1979 · Zbl 0415.76024
[10] Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Numerical solution of partial differential equations ? III. p. 207. New York: Academic Press 1976 · Zbl 0361.35022
[11] Hood, P., Taylor, C.: A numerical solution of the Navier Stokes equations using the finite element technique. Computers and Fluids1, 73-100 (1973) · Zbl 0328.76020
[12] Jamet, P., Raviart, P.A.: Numerical solution of the stationnary Navier. Stokes equations by F.E.M. Lecture Notes in Computer Sc. Int. Symposium. Versailles (1973).
[13] Ladyzenskaya, O.: The mathematical theory of incompressible flow. London: Gordon and Breach, 1969
[14] Letallec, P.: Simulation numérique d’ecoulements visquex incompressibles par des méthodes d’élements finis mixtes. Thèse de 3 ème cycle, Université Pierre et Marie Curie, 1978
[15] Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod, 1969
[16] Periaux, J.: Résolution de quelques problemes non linéaires en aerodynamique par des méthodes d’éléments finis et de moindres carrés fonctionnels. Thèse de 3 ème cycle, Université Pierre et Marie Curie, 1979
[17] Strang, G., Fix, G.: An analysis of the finite element method. New York: Prentice Hall, 1973 · Zbl 0356.65096
[18] Temam, R.: Navier Stokes equations. Amsterdam. North Holland, 1977 · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.