×

Computing the modular degree of an elliptic curve. (English) Zbl 1162.11349

Summary: We review previous methods of computing the modular degree of an elliptic curve, and present a new method (conditional in some cases), which is based upon the computation of a special value of the symmetric square \(L\)-function of the elliptic curve. Our method is sufficiently fast to allow large-scale experiments to be done. The data thus obtained on the arithmetic character of the modular degree show two interesting phenomena. First, in analogy with the class number in the number field case, there seems to be a Cohen-Lenstra heuristic for the probability that an odd prime divides the modular degree. Secondly, the experiments indicate that \(2^r\) should always divide the modular degree, where \(r\) is the Mordell-Weil rank of the elliptic curve. We also discuss the size distribution of the modular degree, or more exactly of the special \(L\)-value which we compute, again relating it to the number field case.

MSC:

11G05 Elliptic curves over global fields
11G18 Arithmetic aspects of modular and Shimura varieties
11Y35 Analytic computations
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

Software:

ecdata
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Abbes A., Compositio Math. 103 pp 269– (1996)
[2] Atkin A., Math. Ann. 185 pp 134– (1970) · Zbl 0177.34901
[3] Barban M., Uspehki Mat. Nauk 21 (127) pp 51– (1966)
[4] Birch B., Computational Number Theory, (Debrecen, 1989) pp 191– (1991)
[5] Birch B., Modular Functions of One variable IV 476 (1975)
[6] Breuil C., J. Amer. Math. Soc. 14 pp 843– (2001) · Zbl 0982.11033
[7] Brumer A., Bull. Amer. Math. Soc. (N.S.) 23 pp 375– (1990) · Zbl 0741.14010
[8] Brumer A., Manuscripta Math. 91 pp 95– (1996) · Zbl 0868.11029
[9] Buhler J., Invent. Math. 79 pp 11– (1985) · Zbl 0584.14027
[10] Buhler J., J. Reine Angew. Math. 492 pp 93– (1997)
[11] Chowla S., Journ. Indian Math. Soc. 15 pp 11– (1951)
[12] Coates J., J. Reine Angew. Math. 375 pp 104– (1987)
[13] Cohen H., A Course in Computational Algebraic Number Theory (1993) · Zbl 0786.11071
[14] Cohen H., Advanced Topics in Computational Number Theory (2000) · Zbl 0977.11056
[15] Cohen H., Number Theory, Noordwijkerhout 1983 pp 33– (1984)
[16] Cremona J., Algorithms for Modular Elliptic Curves., (1992) · Zbl 0758.14042
[17] Cremona J., Math. Comp. 64 (211) pp 1235– (1995)
[18] Cremona J., Experiment. Math. pp 97– (1997) · Zbl 0894.11027
[19] Duke W., Invent. Math. 139 (2000)
[20] Edixhoven B., Arithmetic Algebraic Geometry (Texel, 1989) pp 25– (1991)
[21] Eichler M., Modular functions of One Variable I 320 pp 75– (1973)
[22] Elliott P., Probabilistic Number Theory II. Central Limit Theorems 240 (1980) · Zbl 0431.10030
[23] Flach M., Séminaire de Théorie des Nombres, Paris 1991–92 pp 23– (1993)
[24] Frey G., Séminaire de Théorie des Nombres, Paris 1985–86 pp 39– (1987)
[25] Frey G., Algorithmic Algebra and Number Theory (Heidelberg, 1997) pp 11– (1999)
[26] Gelbart S., Ann. Sci. École Norm. Sup. (4) 11 pp 471– (1978) · Zbl 0406.10022
[27] Gross B., Invent. Math. 84 pp 225– (1986) · Zbl 0608.14019
[28] Hoffstein J., Ann. of. Math. (2) 140 pp 161– (1994) · Zbl 0814.11032
[29] Jacobson M., Algorithmic Number Theory (Portland, OR, 1998) pp 463– (1998)
[30] Katz N., Arithmetic Moduli of Elliptic Curves, Annals of Mathematics Studies 108 (1985) · Zbl 0576.14026
[31] Kohel D., Algorithmic Number Theory (Leiden, 2000) pp 405– (2000)
[32] Lavrik A., Izv. Akad. Nauk SSSR Ser. Mat. 31 pp 431– (1967)
[33] Luo W., J. Reine Angew. Math. 506 pp 215– (1999) · Zbl 0969.11018
[34] Manin J., Izv. Akad. Nauk SSSR Ser. Mat. 36 pp 19– (1972)
[35] Mazur B., Inst. Hautes Études Sci. Publ. Math. 47 pp 33– (1977) · Zbl 0394.14008
[36] Merel L., Manuscripta Math. 80 pp 283– (1993) · Zbl 0812.14013
[37] Merel L., Elliptic Curves, Modular Forms, and Fermat’s Last Theorem (Hong Kong, 1993) pp 110– (1995)
[38] Mestre, J.F. ”La méthode des graphes. Exemples et applications.”. Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata, 1986). pp.217–242. Nagoya: Nagoya Univ. [Mestre 86]
[39] Mestre J.-F., J. Reine Angew. Math. 400 pp 173– (1989)
[40] Mestre J.-F., Arithmetic Algebraic Geometry (Texel, 1989) pp 209– (1991)
[41] Neumann O., Math. Nachr. 49 pp 107– (1971) · Zbl 0225.14012
[42] Neumann O., Math. Nachr. 56 pp 269– (1973) · Zbl 0277.14011
[43] Pizer A., J. Math. Soc. Japan 28 pp 676– (1976) · Zbl 0344.12005
[44] Royer E., Mathematische Annalen 321 pp 667– (2001) · Zbl 1006.11023
[45] Schoof R., Math. Comp. 44 (170) pp 483– (1985)
[46] Setzer B., J. London Math. Soc. (2) 10 pp 367– (1975) · Zbl 0324.14005
[47] Shimura G., Proc. London Math. Soc. (3) 31 pp 79– (1975) · Zbl 0311.10029
[48] Shimura G., Comm. Pure Appl. Math 29 pp 783– (1976) · Zbl 0348.10015
[49] Stein W., Algorithmic Number Theory (Sydney, 2002) pp 267– (2002)
[50] Stevens G., Invent. Math. 98 pp 75– (1989) · Zbl 0697.14023
[51] Tate J., Modular Functions of One Variable IV 476 pp 33– (1975) · Zbl 1214.14020
[52] Wiles A., Ann. of Math. (2) 141 pp 443– (1995) · Zbl 0823.11029
[53] Womack, T. 2002. [Womack 02], Available from World Wide Web:http://www.maths.nott.ac.uk/personal/jec/ftp/data/womack.data
[54] Wong S., J. Number Theory 89 pp 114– (2001) · Zbl 1067.11032
[55] Zagier D., Canad. Math. Bull. 28 pp 372– (1985) · Zbl 0579.14027
[56] Zagier D., The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998) pp 561– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.