Akhmet, M. U.; Alzabut, J.; Zafer, A. Perron’s theorem for linear impulsive differential equations with distributed delay. (English) Zbl 1101.34065 J. Comput. Appl. Math. 193, No. 1, 204-218 (2006). The authors show that under a Perron condition, the trivial solution of a linear impulsive differential equation with distributed delay is uniformly asymptotically stable. Reviewer: Gani T. Stamov (Sliven) Cited in 20 Documents MSC: 34K45 Functional-differential equations with impulses 34K20 Stability theory of functional-differential equations 34K06 Linear functional-differential equations Keywords:Perron condition; Stability; Impulse; Distributed delay PDF BibTeX XML Cite \textit{M. U. Akhmet} et al., J. Comput. Appl. Math. 193, No. 1, 204--218 (2006; Zbl 1101.34065) Full Text: DOI OpenURL References: [1] Angelova, J.; Dishliev, A.; Nenov, S., I-optimal curve for impulsive lotka – volterra predator – prey model, Comput. math. applic., 43, 10-11, 1203-1218, (2002) · Zbl 1007.34008 [2] Anokhin, A.; Berezansky, L.; Braverman, E., Exponential stability of linear delay impulsive differential equations, J. math. anal. appl., 193, 923-941, (1995) · Zbl 0837.34076 [3] Azbelev, N.V.; Berezanskii, L.M.; Simonov, P.M.; Chistyakov, A.V., Stability of linear systems with time lag, Differential equations, 23, 493-500, (1987) · Zbl 0652.34079 [4] Bellman, R.; Cooke, K.L., Differential-difference equations, (1963), Academic Press Inc. New York · Zbl 0115.30102 [5] Berezansky, L.; Braverman, E., Boundedness and stability of impulsively perturbed systems in a Banach space, Int. J. theoret. phys., 33, 2075-2091, (1994) · Zbl 0814.34047 [6] Bohl, P., Riene angew math., 144, 284-318, (1913) [7] Gusarenko, S.A.; Domoshnitskii, A.I., Asymptotic and oscillational properties of first order linear scalar functional differential equations, Differential equations, 25, 1480-1491, (1989) · Zbl 0726.45011 [8] Halanay, A., Differential equationsstability, oscillations, time lags, (1966), Academic Press Inc. New York [9] Halanay, A.; Wexler, D., Qualitative theory of impulsive systems, (1968), Editura Academiei Republicii Socialiste Romania Bucharest [10] Hale, J.K.; Lunel, R.M.V., Introduction to functional differential equations, (1966), Springer New York [11] Kreyszig, E., Introductory functional analysis with applications, (1989), Wiley New York · Zbl 0706.46001 [12] Liu, X.; Ballinger, G., Boundedness for impulsive delay differential equations and applications to population growth models, Nonlinear anal., 53, 7-8, 1041-1062, (2003) · Zbl 1037.34061 [13] Nieto, J.J., Impulsive resonance periodic problems of first order, Appl. math. lett., 15, 4, 489-493, (2002) · Zbl 1022.34025 [14] Perron, O., Die stabilitatsfrage bei differentialgleichungen, Math. Z., 32, 703-728, (1930) · JFM 56.1040.01 [15] Samoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore · Zbl 0837.34003 [16] Sun, J.; Zhang, Y.; Wu, Q., Less conservative conditions for asymptotic stability of impulsive control systems, IEEE trans. automat. control, 48, 5, 829-831, (2003) · Zbl 1364.93691 [17] Tang, S.; Chen, L., Global attractivity in a food-limited population model with impulsive effects, J. math. anal. appl., 292, 1, 211-221, (2004) · Zbl 1062.34055 [18] Tian, Y.P.; Yu, X.; Chua, O.L., Time-delayed impulsive control of chaotic hybrid systems, Internat. J. bifur. chaos appl. sci. eng., 14, 3, 1091-1104, (2004) · Zbl 1129.93515 [19] Tyshkevich, V.A., A perturbations – accumulation problem for linear differential equation with time lag, Differential equations, 14, 177-186, (1978) · Zbl 0409.34073 [20] Zhang, S.; Dong, L.; Chen, L., The study of predator – prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos solitons fractals, 23, 2, 631-643, (2005) · Zbl 1081.34041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.