zbMATH — the first resource for mathematics

Semidefinite and second-order cone optimization approach for the Toeplitz matrix approximation problem. (English) Zbl 1096.65052
Summary: The nearest positive semidefinite symmetric Toeplitz matrix to an arbitrary data covariance matrix; is useful in many areas of engineering, including stochastic filtering and digital signal processing applications. In this paper, the interior point primal-dual path-following method will be used to solve our problem after reformulating it into different forms, first as a semidefinite programming problem, then into the form of a mixed semidefinite and second-order cone optimization problem. Numerical results, comparing the performance of these methods against the modified alternating projection method are reported.

65K05 Numerical mathematical programming methods
90C20 Quadratic programming
90C22 Semidefinite programming
filterSQP; SDPA; SDPpack
Full Text: DOI
[1] DOI: 10.1002/nla.282 · Zbl 1071.65081 · doi:10.1002/nla.282
[2] Al-Homidan S., Math. Sci. Research J. 6 pp 104– (2002)
[3] S. Al-Homidan and R. Fletcher, Hybrid methods for finding the nearest Euclidean distance matrix. In: Recent Advances in Nonsmooth Optimization (Eds. D. Du, L. Qi, and R. Womersley), World Scientific Publishing Co. Pte. Ltd., 1995, pp. 1 - 7. · Zbl 0928.65077
[4] F. Alizadeh, J. A. Haeberly, M. V. Nayakkanakuppann, M. Overton, and S. Schmieta, SDPPack, User’s Guide, 1997.
[5] DOI: 10.1137/S1052623496304700 · Zbl 0911.65047 · doi:10.1137/S1052623496304700
[6] G. Cybenko, Moment problems and low rank Toeplitz approximations. Circuits Systems Signal processing (1982) 1, 345 - 365. · Zbl 0507.65011
[7] R., J. Amer. Stat. 78 pp 839– (1983)
[8] R. Fletcher and S. Leyffer, User manual for filterSQP. Tech. Report No. NA/181, University of Dundee Numerical Analysis Report, Dundee, Scotland, 1999.
[9] K. Fujisawa, M. Fukuda, M. Kojima, and K. Nakata, Numerical evaluation of SDPA (semidefinite programming algorithm). In: High Performance Optimization (Eds. H. Frenk, K. Roos, T. Terlakey, and S. Zhang), Kluwer Academic Press, 2000, pp. 267 - 301. · Zbl 0952.90047
[10] DOI: 10.1109/78.298303 · doi:10.1109/78.298303
[11] DOI: 10.1007/BF01580719 · Zbl 0685.90074 · doi:10.1007/BF01580719
[12] Inter. J. Control 57 pp 1269– (1993)
[13] Kailath T., IEEE Transactions on Information Theory pp 145– (1974)
[14] S. Y. Kung, Toeplitz approximation method and some applications. In: Inter. Sympos. on Math. Theory of Networks and Systems, Vol. IV. Western Periodicals Co., Morth Hollywood, CA, 1981.
[15] DOI: 10.1016/S0024-3795(98)10032-0 · Zbl 0946.90050 · doi:10.1016/S0024-3795(98)10032-0
[16] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming. SIAM, Philadelphia, 1994. · Zbl 0824.90112
[17] DOI: 10.1137/S1052623495290209 · Zbl 0922.90110 · doi:10.1137/S1052623495290209
[18] J. von Neumman, Functional Operators, II. The geometry of Orthogonal Spaces. Annals of Math. studies, No. 22, Princeton Univ. Press, 1950.
[19] R. Skelton, The jury test and covariance control. In: Proceedings of the Symposium on Fundamentals of Discrete Time Systems, Chicago, 1992.
[20] DOI: 10.1080/1055678021000045123 · Zbl 1032.90021 · doi:10.1080/1055678021000045123
[21] DOI: 10.1137/0614052 · Zbl 0784.15015 · doi:10.1137/0614052
[22] C. Therrien, Discrete Random Signals and Statistical Signal Processing. Englewood Cliffs, NJ, Prentice Hall, 1992. · Zbl 0747.94004
[23] Todd M. J., Optim. Meth. Software 11 pp 545– (1999)
[24] L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. (1996) 38, 49 - 95. · Zbl 0845.65023
[25] DOI: 10.1007/BF02564273 · Zbl 0064.06301 · doi:10.1007/BF02564273
[26] A. Willsky, Digital Signal Processing and Control and Estimation Theory. MIT Press, Cambridge, Mass, 1979. · Zbl 0512.93001
[27] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of Semidefinite Programming. Kluwer Academic Publishers Group, Boston-Dordrecht-London, 2000. · Zbl 0951.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.