Harman, Glyn Trigonometric sums over primes. II. (English) Zbl 0504.10017 Glasg. Math. J. 24, 23-37 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 8 Documents MSC: 11L20 Sums over primes 11L15 Weyl sums 11L07 Estimates on exponential sums 11J71 Distribution modulo one 11N05 Distribution of primes Keywords:trigonometric sums over primes; distribution modulo one; Vaughan’s identity Citations:Zbl 0465.10029; Zbl 0018.39002; Zbl 0033.164; Zbl 0504.10018 PDF BibTeX XML Cite \textit{G. Harman}, Glasg. Math. J. 24, 23--37 (1983; Zbl 0504.10017) Full Text: DOI OpenURL References: [1] Fomenko, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 82 pp 158– (1979) [2] DOI: 10.1093/qmath/os-8.1.32 · Zbl 0016.29003 [3] DOI: 10.1112/jlms/s2-25.2.201 · Zbl 0443.10015 [4] DOI: 10.1307/mmj/1029002511 · Zbl 0438.10027 [5] Vinogradov, The method of trigonometrical sums in the theory of numbers (1971) [6] Harman, Mathematika 28 pp 249– (1981) [7] Vinogradov, Izv. Akad. Nauk SSSR Ser. Mat. 12 pp 225– (1948) [8] Vaughan, C.R. Acad. Sci. Paris Ser. A 285 pp 981– (1977) [9] Vaughan, Ada Arith. 37 pp 111– (1980) [10] DOI: 10.1090/S0002-9904-1978-14497-8 · Zbl 0408.10033 [11] Hua, Additive theory of prime numbers, Amer. Math. Soc. Transl. 13 (1965) [12] Vinogradov, The method of trigonometrical sums in the theory of numbers (1954) · Zbl 0055.27504 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.