×

Un théorème de théorie de la mesure, lié à deux théorèmes de Mokobodzki. (French) Zbl 0504.28010

MSC:

28A35 Measures and integrals in product spaces
28A50 Integration and disintegration of measures
28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] C. DELLACHERIE , Appendice à l’exposé de Makobodzki , [Séminaire de probabilité, XII, p. 509 (Lecture Notes in Math., p. 649)]. Numdam
[2] C. DELLACHERIE , Capacités et processus stochastiques , Springer Verlag, 1972 . MR 56 #6810 | Zbl 0246.60032 · Zbl 0246.60032
[3] C. GRAHAM et A. MACLEAN , A Multiplier Theorem for Continuous Measures (Studia Math., vol. XVI, 1980 , p. 213-225). Article | MR 81k:43006 | Zbl 0354.43005 · Zbl 0354.43005
[4] C. GRAHAM et A. MC GEHEE , Essay in Commutative Harmonic Analysis , Springer Verlag, 1979 . Zbl 0439.43001 · Zbl 0439.43001
[5] G. MOKOBODZKI , Ensembles à coupes dénombrables et capacités dominées par une mesure [Séminaire de Probabilités, XII, p. 491 (Lecture Notes in Math., n^\circ 469)]. Numdam | Zbl 0401.28002 · Zbl 0401.28002
[6] M. TALAGRAND , Somme vectorielle d’ensembles de mesure nulle (Ann. Int. Fourier, vol. XXVI, 1976 , p. 137-172). Numdam | MR 54 #10534 | Zbl 0295.28027 · Zbl 0295.28027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.