zbMATH — the first resource for mathematics

Espaces de Banach stables. (French) Zbl 0504.46013

46B20 Geometry and structure of normed linear spaces
46B25 Classical Banach spaces in the general theory
Full Text: DOI
[1] D. J. Aldous,Subspaces of L 1 via random measures, à paraître. · Zbl 0474.46007
[2] H. F. Bohnenblust,An axiomatic characterization of L p-spaces, Duke Math. J.6 (1940), 627–640. · JFM 66.0537.05
[3] J. Bretagnolle, D. Dacunha-Castelle et J.-L. Krivine,Lois stables et espaces L p, Ann. Inst. H. Poincaré Sect. A2 (1966), 231–259. · Zbl 0139.33501
[4] D. Dacunha-Castelle et J.-L. Krivine,Sous-espaces de L 1, Israel J. Math.26 (1977), 320–351. · Zbl 0344.46051
[5] W. J. Davis, T. Figiel, W. B. Johnson et A. Pelczynski,Factoring weakly compact operators, J. Functional Analysis17 (1974), 311–327. · Zbl 0306.46020
[6] D. J. H. Garling,Stable Banach spaces, à paraître. · Zbl 0485.46012
[7] S. Guerre et J. T. Lapresté,Quelques propriétés des espaces de Banach stables, Israel J. Math.39 (1981), 247–254. · Zbl 0469.46015
[8] R. C. James,Uniformly non-square Banach spaces, Ann. of Math.80 (1964), 542–550. · Zbl 0132.08902
[9] J.-L. Krivine,Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math.104 (1976), 1–29. · Zbl 0329.46008
[10] J.-L. Krivine et B. Maurey,Espaces de Banach stables, CRAS Paris298 (1979), 679–681. · Zbl 0421.46015
[11] J. Lindenstrauss et L. Tzafriri,Classical Banach Spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete92, Springer Verlag, 1977. · Zbl 0362.46013
[12] J. Lindenstrauss et L. Tzafriri,Classical Banach Spaces II, Ergebnisse der Mathematik und ihrer Grenzgebiete97, Springer Verlag, 1979. · Zbl 0403.46022
[13] B. Maurey,Tout sous-espace de L 1 contient un lp, d’après D. Aldous Séminaire d’Analyse Fonctionnelle 1979–80, exposés I–II, Ecole Polytechnique, Paris.
[14] Y. Raynaud, Thèse de 3ème cycle, Paris VII, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.