×

zbMATH — the first resource for mathematics

Geometry in Grassmannians and a generalization of the dilogarithm. (English) Zbl 0504.57021

MSC:
57T15 Homology and cohomology of homogeneous spaces of Lie groups
57R20 Characteristic classes and numbers in differential topology
58A10 Differential forms in global analysis
32M10 Homogeneous complex manifolds
32L20 Vanishing theorems
57S25 Groups acting on specific manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scK. Aomoto, Addition theorems of Abel type for hyper-logarithms, I, preprint, Nagoya University. · Zbl 0545.33014
[2] Aomoto, K, A generalization of Poincaré normal function on a polarized manifold, Proc. Japan acad. ser. A, math. sci., 55, No. 9, 353-358, (1975) · Zbl 0453.14011
[3] Atiyah, M.F, Convexity and commuting Hamiltonians, (1981), Oxford University, preprint · Zbl 0482.58013
[4] Beilinson, A, Algebraic k-theory and values of L functions, (1980), preprint, Moscow
[5] Binet, J, Mémoire sur la théorie des axes conjugués et des moments d’inertie des corps, J. école polytechn., 9, No. 16, 41-67, (1811)
[6] Bloch, S, Applications of the dilogarithm function in algebraic k-theory and algebraic geometry, (), 103-114
[7] Bol, G, Über ein bemerkensvertes funfgewebe in der ebene, Abh. math. sem. univ. Hamburg., 11, 393, (1935) · JFM 62.0830.01
[8] Damiano, D.B, Webs, abelian equations, and characteristic classes, ()
[9] Damiano, D.B, Webs and characteristic forms of Grassmann manifolds, (1981), Princeton University, preprint
[10] Danilov, V.I, The geometry of toric varieties, Usp. mat. nauk, Russian math. surveys, 33, No. 2, 97-154, (1978), Trans. · Zbl 0425.14013
[11] Euler, L, De summatione serierum in hac formo contenlarum \(a1 + a\^{}\{2\}4 + a\^{}\{3\}9 + a\^{}\{4\}16 + …\), Mém. acad. st. petersberg bd., 3, 26-42, (1779)
[12] Goodwillie, T, Volume and dilogarithm, (1979), notes
[13] \scB. Gross, On the values of Artin 1-functions, preprint.
[14] Gabrielov, A.M; Gelfand, I.M; Losik, M.V; Gabrielov, A.M; Gelfand, I.M; Losik, M.V, Combinatorial calculation of characteristic classes, functional analysis and its applications, Combinatorial calculation of characteristic classes, functional analysis and its applications, Vol. 9, No. 3, 5-26, (1975), [In Russian] · Zbl 0312.57015
[15] Heckman, G.J, Projections of orbits and asymptotic behaviour of multiplicities for compact Lie groups, (), Leiden · Zbl 0497.22006
[16] Hirzebruch, F, Neue topologischen methoden in der algebraischen geometrie, (1962), Springer-Verlag Berlin
[17] Klein, F; Lie, S; Klein, F; Lie, S, Sur une certaine famille de courbes et de surfaces, C. R. acad. sci. Paris, C. R. acad. sci. Paris, 1275-1279, (1870) · JFM 02.0632.01
[18] Lewin, L, Dilogarithms and associated functions, (1958), MacDonald London · Zbl 0083.35904
[19] MacPherson, R.D, The combinatorial formula of gabrielov, Gelfand, and losik for the first pontrjagin class, Sem. bourbaki, No. 497, (1976/1977)
[20] Milnor, J, Computation of volume, (), Chap. 7
[21] Milnor, J; Stasheff, J, Characteristic classes, Annals of mathematics studies no. 76, (1974), Princeton N.J. · Zbl 0298.57008
[22] Rogers, L.J, On function sum theorems connected with the series \(∑\^{}\{∞\}n = 1x\^{}\{n\}n\^{}\{2\}\), (), 169-189 · JFM 37.0428.03
[23] Spence, W, An essay on logarithmic transcendents, (1809), London and Edinburgh
[24] \scD. Wigner, to appear.
[25] Yusin, B.V, Sur LES formes Sp,q apparaissant dans le calcul combinatoire de la 2e classe de pontrjagin par la méthode de gabrielov, Gelfand et losik, C. R. acad. sci. Paris, (1981), Ser. A · Zbl 0469.57018
[26] Zindler, K, Die tetraedralen und die anderen kollineationskomplexe, Encyklopädie der mathematischen wissenschaften, Band 3, 1150-1161, (1928), Teil 2
[27] Berezin, F.A; Gelfand, I.M, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Trudy moskov. mat. obšč., 5, 311-351, (1956)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.