On critical point theory for indefinite functionals in the presence of symmetries. (English) Zbl 0504.58014


58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
22E70 Applications of Lie groups to the sciences; explicit representations
34C25 Periodic solutions to ordinary differential equations
37C80 Symmetries, equivariant dynamical systems (MSC2010)
70H05 Hamilton’s equations
37G99 Local and nonlocal bifurcation theory for dynamical systems


Zbl 0465.49006
Full Text: DOI


[1] H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 4, 539 – 603. · Zbl 0452.47077
[2] Herbert Amann and Eduard Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), no. 1-2, 149 – 189. · Zbl 0443.70019
[3] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349 – 381. · Zbl 0273.49063
[4] P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with ”strong” resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, 981 – 1012. · Zbl 0522.58012
[5] Vieri Benci, Some critical point theorems and applications, Comm. Pure Appl. Math. 33 (1980), no. 2, 147 – 172. · Zbl 0472.58009
[6] Vieri Benci, A geometrical index for the group \?\textonesuperior and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 393 – 432. · Zbl 0447.34040
[7] Vieri Benci and Paul H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241 – 273. · Zbl 0465.49006
[8] David C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972/73), 65 – 74. · Zbl 0228.58006
[9] Ivar Ekeland and Jean-Michel Lasry, Sur le nombre de points critiques de fonctions invariantes par des groupes, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 11, Ai, A559 – A562 (French, with English summary). · Zbl 0343.46035
[10] Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139 – 174. · Zbl 0403.57001
[11] M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York, 1964.
[12] L. A. Ljusternik and L. Schnirelmann, Topological methods in the calculus of variations, Hermann, Paris, 1934.
[13] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139 – 195.
[14] Paul H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980), no. 5, 609 – 633. · Zbl 0425.34024
[15] -, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 225-251.
[16] -, Variational methods for finding periodic solutions of differential equations, Nonlinear Evolution Equations (M. Crandall, editor), Academic Press, New York, 1978, pp. 225-251.
[17] Martin Schechter, Spectra of partial differential operators, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. · Zbl 0607.35005
[18] H. Weyl, The theory of groups and quantum mechanics, Dover, New York, 1950. · Zbl 0041.25401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.