Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromone-binding protein. (English) Zbl 1102.92025

Summary: Full quantum computation of the electronic state of proteins has recently become possible by the advent of the ab initio fragment molecular orbital (FMO) method. We applied this method to the analysis of the interaction between the Bombyx mori pheromone-binding protein and its ligand, bombykol. The protein-ligand interaction of this molecular complex was minutely analyzed by the FMO method, and the analysis revealed several important interactions between the ligand and amino acid residues.


92C40 Biochemistry, molecular biology
92-08 Computational methods for problems pertaining to biology
92C05 Biophysics


Full Text: DOI


[1] Fedorov, D.G.; Kitaura, K., The importance of three-body terms in the fragment molecular orbital method, J. chem. phys., 120, 6832-6840, (2004)
[2] Fedorov, D.G.; Kitaura, K., Second order moller – plesset perturbation theory based upon the fragment molecular orbital method, J. chem. phys., 121, 2483-2490, (2004)
[3] Fedorov, D.G.; Olson, R.M.; Kitaura, K.; Gordon, M.S.; Koseki, S., A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO), J. comput. chem., 25, 872-880, (2004)
[4] Fukuzawa, K.; Kitaura, K.; Nakata, K.; Kaminuma, T.; Nakano, T., Fragment molecular orbital study of the binding energy of ligands to the estrogen receptor, Pure appl. chem., 75, 2405-2410, (2003)
[5] Fukuzawa, K.; Kitaura, K.; Uebayasi, M.; Nakata, K.; Kaminuma, T.; Nakano, T., Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method, J. comput. chem., 26, 1-10, (2005)
[6] Horst, R.; Damberger, F.; Luginbühl, P.; Güntert, P.; Peng, G.; Nikonova, L.; Leal, W.S.; Wüthrich, K., NMR structure reveals intramolecular regulation mechanism for pheromone binding and release, Proc. natl. acad. sci., 98, 14374-14379, (2001)
[7] Ishimoto, T.; Tokiwa, H.; Teramae, H.; Nagashima, U., Theoretical study of intramolecular interaction energies during dynamics simulations of oligopeptides by the fragment molecular orbital-Hamiltonian algorithm method, J. chem. phys., 122, (2005), Art. No. 094905
[8] Kaissling, K.E.; Priesner, E., Die riechschwelle des seidenspinners, Naturwissenshaften, 57, 23-28, (1970)
[9] Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M., Fragment molecular orbital method: an approximate computational method for large molecules, Chem. phys. lett., 313, 701-706, (1999)
[10] Kitaura, K.; Suzuki, S.; Nakano, T.; Komeiji, Y.; Uebayasi, M., Fragment molecular orbital method: analytical energy gradients, Chem. phys. lett., 336, 163-170, (2001)
[11] Kollman, P.A.; Dixon, R.; Cornell, W.; Fox, T.; Chipot, C.; Pohorille, A., The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data, (), 83-96
[12] Komeiji, Y.; Inadomi, Y.; Nakano, T., PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules, Comput. biol. chem., 28, 155-161, (2004) · Zbl 1089.92010
[13] Komeiji, Y.; Nakano, T.; Fukuzawa, K.; Ueno, Y.; Inadomi, Y.; Nemoto, T.; Uebayasi, M.; Fedorov, D.G.; Kitaura, K., Fragment molecular orbital method: application to molecular dynamics simulation, ‘ab initio FMO-MD’, Chem. phys. lett., 372, 342-347, (2003)
[14] Komeiji, Y.; Uebayasi, M.; Yamato, I., Molecular dynamics simulations of the trp apo- and holo-repressors: domain structure and ligand – protein interaction, Proteins, 20, 248-258, (1994)
[15] Lee, D.; Damberger, F.F.; Peng, G.; Horst, R.; Güntert, P.; Nikonova, L.; Leal, W.S.; Wütrich, K., NMR structure of the unliganded bombyx Mori pheromone-binding protein at physiological ph, FEBS lett., 531, 314-318, (2002)
[16] Nakano, T.; Kaminuma, T.; Sato, T.; Fukuzawa, K.; Akiyama, Y.; Uebayasi, Y.; Kitaura, K., Fragment molecular orbital method: use of approximate electrostatic potential, Chem. phys. lett., 351, 475-480, (2002)
[17] Nakano, T.; Kaminuma, T.; Sato, T.; Akiyama, Y.; Uebayasi, M.; Kitaura, K., Fragment molecular orbital method: application to polypeptides, Chem. phys. lett., 318, 614-618, (2000)
[18] Nemoto, T.; Uebayasi, M.; Komeiji, Y., Flexibility of a loop in a pheromone binding protein from bombyx Mori: a molecular dynamics simulation, Cbi j., 2, 32-37, (2002)
[19] Pelosi, P.; Maida, R., Odorant-binding proteins in insects, Comp. biochem. physiol. B, 111, 503-514, (1995)
[20] Sandler, B.H.; Nikonova, L.; Leal, W.S.; Clardy, J., Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein – bombykol complex, Chem. biol., 7, 143-151, (2000)
[21] Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgomery, J.A., General atomic and molecular electronic-structure system, J. comput. chem., 14, 1347, (1993)
[22] Sugiki, S.-I.; Matsuoka, M.; Usuki, R.; Sengoku, Y.; Kurita, N.; Sekino, H.; Tanaka, S., Density functional calculations on the interaction between catabolite activator protein and cyclic AMP using the fragment molecular orbital method, J. theor. comput. chem., 4, 183-195, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.