×

zbMATH — the first resource for mathematics

The theory of d-sequences and powers of ideals. (English) Zbl 0505.13004

MSC:
13A15 Ideals and multiplicative ideal theory in commutative rings
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
13H99 Local rings and semilocal rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bass, H, On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28, (1963) · Zbl 0112.26604
[2] \scM. Brodmann, Asymptotic Stability of Ass (\(MI\^{}\{n\}M\)), Proc. Amer. Math. Soc., in press. · Zbl 0395.13008
[3] \scM. Brodmann, The asymptotic nature of analytic spread, to appear. · Zbl 0413.13011
[4] Buchsbaum, D; Eisenbud, D, What makes a complex exact?, J. algebra, 25, 259-268, (1973) · Zbl 0264.13007
[5] Buchsbaum, D; Eisenbud, D, Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Amer. J. math., 99, 447-485, (1974) · Zbl 0373.13006
[6] Burch, L, Codimension and analytic spread, (), 369-373 · Zbl 0242.13018
[7] Cowsik, R; Nori, On the fibers of blowing up, J. Indian math. soc., 40, 217-222, (1976) · Zbl 0437.14028
[8] \scC. DeConcini, D. Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, to appear. · Zbl 0435.14015
[9] Fiorenteni, M, On relative regular sequences, J. algebra, 18, 384-389, (1971)
[10] Grothendieck, A, Local cohomology, (), notes by R. Harshorne · Zbl 0185.49202
[11] Hermann, M; Schmidt, R, Zur transitivität der normalen flacheit, Invent. math., 28, (1975)
[12] \scJ. Herzog, Note on complete intersections, preprint.
[13] Hironaka, H, Resolution of singularities of an algebraic variety over a field of characteristic zero 1, Ann. of math., 79, (1964) · Zbl 0122.38603
[14] Hochster, M, Criteria for equality of ordinary and symbolic powers of primes, Math. Z., 133, 53-65, (1973) · Zbl 0251.13012
[15] Hochster, M; Eagon, J, Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. math., 93, 1020-1058, (1971) · Zbl 0244.13012
[16] Hochster, M; Roberts, J, The pureity of Frobenius and local cohomology, Advances in math., 21, 117-172, (1976) · Zbl 0348.13007
[17] Huneke, C, Thesis, (1978), Yale University
[18] Huneke, C, On the symmetric and Rees algebras of an ideal generated by a d-sequence, J. algebra, 62, 268-275, (1980) · Zbl 0439.13001
[19] Huneke, C, Symbolic powers of primes and special graded algebras, Comm. algebra, 9, 4, 339-366, (1981) · Zbl 0454.13003
[20] Kaplansky, I, Commutative rings, (1970), Allyn & Bacon Boston · Zbl 0203.34601
[21] Kunz, E, Almost complete intersections are not Gorenstein rings, J. algebra, 28, 111-115, (1974) · Zbl 0275.13025
[22] Matsumura, H, Commutative algebra, (1970), Benjamin New York · Zbl 0211.06501
[23] McAdam, S, Unmixed 2-dimensional local domains, Pacific J. math., 68, 153-160, (1977) · Zbl 0349.13010
[24] Northcott, D.G; Rees, D, Reductions of ideals in local rings, (), 145-158 · Zbl 0057.02601
[25] Peskine, C; Szpiro, L, Liaisons des variétés algebriques, Invent. math., 26, 271-302, (1974) · Zbl 0298.14022
[26] Robbiano, L; Valla, G, On normal flatness and normal torsion freeness, J. algebra, 43, 222-229, (1976) · Zbl 0349.13004
[27] Robbiano, L, A property of 1Pt × 1pn, Comm. algebra, (1978)
[28] Struckrod, J; Vogel, W, Towards a theory of Buchsbaum singularities, Amer. J. math., 100, 727-746, (1978) · Zbl 0429.14001
[29] Stuckrod, J; Vogel, W, Eine verallgemeinerung der Cohen-Macaulay ringe und anwendungen auf ein problem der multiplizitäts theorie, J. math. Kyoto univ., 13, 513-528, (1978)
[30] Stuckrod, J; Vogel, W, Über das amsterdamer program von W. grobner und Buchsbaum varietäten, Monatsh. math., 78, 433-445, (1974) · Zbl 0297.14002
[31] \scO. Zariski and P. Samuel, “Commutative Algebra,” Vols. 1 and 2, van Nostrand, New York. · Zbl 0121.27901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.