×

Sections des fibres vectoriels sur une courbe. (French) Zbl 0505.14011


MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14H40 Jacobians, Prym varieties
14K30 Picard schemes, higher Jacobians
14F35 Homotopy theory and fundamental groups in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] ATIYAH (M. F.) . - Vector bundles over an elliptic curve , Proc. London Math. Soc., t. 7, 1957 . MR 24 #A1274 | Zbl 0084.17305 · Zbl 0084.17305
[2] DIGNE (F.) . - Sections des fibrés vectoriels sur une courbe , Bull. Soc. Math. France, t. 102, 1974 . Numdam | MR 50 #13034 | Zbl 0294.14014 · Zbl 0294.14014
[3] GIESECKER (D.) . - Stable vector bundles and the Frobenius morphism , Notes I.H.E.S., 1972 .
[4] HARDER (G.) et NARASIMHAN (M. S.) . - On the cohomology groups of moduli spaces of vector bundles on curves , Math. Annalen, vol. 212, 1975 . MR 51 #509 | Zbl 0324.14006 · Zbl 0324.14006
[5] MUKAI (S) . - Duality between D (X) and D (X) with its application to Picard sheaves (à paraître au Journal de Nagoya). Article | Zbl 0417.14036 · Zbl 0417.14036
[6] MUMFORD (D.) . - An analytic construction of degenerating curves over a complete local rings , Compositio Math., vol. 24, 1972 . Numdam | MR 50 #4592 | Zbl 0228.14011 · Zbl 0228.14011
[7] NARASIMHAN (M. S.) et SESHARDI (C. S.) . - Holomorphic vector bundles on a compact Riemann surface , Math. Ann., vol. 155, 1964 . MR 29 #4072 | Zbl 0122.16701 · Zbl 0122.16701
[8] RAYNAUD (M.) . - Schémas en groupes de type (p, ..., p) , Bull. Soc. Math. France, t. 102, 1974 . Numdam | MR 54 #7488 | Zbl 0325.14020 · Zbl 0325.14020
[9] SAFAREVIC (I.) . - On p-Extensions , A.M.S. translations, séries 2, vol. 4, 1956 . Zbl 0071.03302 · Zbl 0071.03302
[10] SESHARDI (C. S.) . - Space of unitary vector bundles on a compact Riemann surface , Ann. of Maths., vol. 85 1967 . MR 38 #1693 | Zbl 0173.23001 · Zbl 0173.23001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.