×

zbMATH — the first resource for mathematics

A note on Enriques’ surfaces in characteristic 2. (English) Zbl 0505.14027

MSC:
14J25 Special surfaces
14D10 Arithmetic ground fields (finite, local, global) and families or fibrations
14G15 Finite ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] P. Blass : Unirationality of Enriques’ Surfaces in Characteristic Two . Comp. Math. 45 (1982) 393-398. · Zbl 0549.14019 · numdam:CM_1982__45_3_393_0 · eudml:89543
[2] P. Blass : Some geometric applications of a differential equation in characteristic p > 0 to the theory of algebraic surfaces , to appear in Proc. of the Conference in Honour of Nathan Jacobson, AMS (1982). · Zbl 0561.14018 · doi:10.1090/conm/013/37
[3] E. Bombieri and D. Mumford : Enriques’ classification of surfaces in char . p, III, Invent. Math. 36 (1976) 197-232. · Zbl 0336.14010 · doi:10.1007/BF01390138 · eudml:142405
[4] R. Crew : Slope characteristics in crystalline cohomology. Thesis , Princeton University, 1981.
[5] T. Katsura : Unirational elliptic surfaces in characteristic p . Tohoku Math. J. 33 (1981) 521-553. · Zbl 0466.14008 · doi:10.2748/tmj/1178229353
[6] K. Kodaira and J. Morrow : Complex Manifolds , Holt, Rinehart and Winston, 1971. · Zbl 0325.32001
[7] W.E. Lang : Quasi-elliptic surfaces in characteristic three. Thesis , Harvard University, 1978.
[8] A.N. Rudakov and I.R. Shafarevich : Supersingular K3 surfaces over fields of characteristic 2 . Math. USSR-Izv. 13-1 (1979) 147-165. · Zbl 0424.14008 · doi:10.1070/IM1979v013n01ABEH002016
[9] J.P. Serre : On the fundamental group of a unirational variety . J. London Math. Soc. 14 (1974) 233-236. · Zbl 0097.36301 · doi:10.1112/jlms/s1-34.4.481
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.