×

zbMATH — the first resource for mathematics

Character correspondences in finite general linear, unitary and symmetric groups. (English) Zbl 0505.20009

MSC:
20C20 Modular representations and characters
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Anderson, F.W., Fuller, K.R.: Rings and categories of modules. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0301.16001
[2] Feit, W.: The representation theory of finite groups. New York: North-Holland 1982 · Zbl 0493.20007
[3] Fong, P.: On the characters ofp-solvable groups. Trans. Amer. Math. Soc.98, 263-284 (1961) · Zbl 0096.25101
[4] Fong, P., Srinivasan, B.: Blocks with cyclic defect groups inGL(n,q). Bull. Amer. Math. Soc.3, 1041-1045 (1980) · Zbl 0452.20008 · doi:10.1090/S0273-0979-1980-14847-8
[5] fong, P., Srinivasan, B.: The blocks of finite general linear and unitary groups. Invent. Math.69, 109-153 (1982) · Zbl 0507.20007 · doi:10.1007/BF01389188
[6] Green, J.A.: Walking around the Brauer tree. J. Austral. Math. Soc.17, 197-213 (1974) · Zbl 0299.20006 · doi:10.1017/S1446788700016761
[7] James, G., Kerber, A.: The representation theory of the symmetric group. London: Addison-Wesley 1981 · Zbl 0491.20010
[8] Knörr, R.: On the vertices of irreducible modules. Ann. of Math.110, 487-499 (1979) · Zbl 0414.20003 · doi:10.2307/1971234
[9] Michler, G.O.: Blocks and centers of group algebras. Lecture Notes in Math.246, pp. 429-563. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0232.16011
[10] Olsson, J.B.: On the blocks ofGL(n,q) I. Trans. Amer. Math. Soc.222, 143-156 (1976) · Zbl 0376.20028
[11] Olsson, J.B.: McKay numbers and heights of characters. Math. Scand.38, 25-42 (1976) · Zbl 0327.20005
[12] Peacock, R.M.: Ordinary character theory in a block with a cyclic defect group. J. Algebra44, 203-220 (1977) · Zbl 0347.20003 · doi:10.1016/0021-8693(77)90175-2
[13] Tappe, J.: Blocks and defect groups of monomial groups. Manuscripta Math.17, 227-252 (1975) · Zbl 0321.20009 · doi:10.1007/BF01170311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.