Affine flows and distal points. (English) Zbl 0505.46006


46A55 Convex sets in topological linear spaces; Choquet theory
47H10 Fixed-point theorems
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
46A50 Compactness in topological linear spaces; angelic spaces, etc.
Full Text: DOI EuDML


[1] Auslander, L., Hahn, F.: Real functions coming from flows on compact spaces and concept of almost periodicity. Trans. Amer. Math. Soc.106, 415-426 (1963) · Zbl 0118.38904
[2] Ellis, R.: Distal transformation groups. Pacific J. Math.8, 401-405 (1958) · Zbl 0092.39702
[3] Furstenberg, H.: The structure of distal flows. Amer. J. Math.85, 477-515 (1963) · Zbl 0199.27202
[4] Glasner, S.: Compressibility properties in topological dynamics. Amer. J. Math.97, 148-171 (1975) · Zbl 0298.54023
[5] Hansel, G., Troallic, J.-P.: Démonstration du théorème de point fixe de Ryll-Nardzewski par extension de la méthode de F. Hahn. C.R. Acad. Sc. Paris Ser. A-B282, 857-859 (1976) · Zbl 0335.47038
[6] Knapp, A.W.: Distal functions on groups. Trans. Amer. Math. Soc.128, 1-40 (1967) · Zbl 0154.33702
[7] Namioka, I.: Right topological groups, distal flows and a fixed point theorem. Math. Systems Theory6, 193-209 (1972) · Zbl 0239.22001
[8] Namioka, I.: Separate continuity and jointcontinuity. Pacific J. Math.51, 515-531 (1974) · Zbl 0294.54010
[9] Namioka, I., Asplund, E.: A geometric proof of Ryll-Nardzewski’s fixed point theorem. Bull. Amer. Math. Soc.73, 443-445 (1967) · Zbl 0177.40404
[10] Pettis, J.B.: On Nikaidô’s proof of the invariant mean-value theorem. Studia Math.33, 193-196 (1969) · Zbl 0179.47003
[11] Ryll-Nardzewski, C.: On fixed points of semigroups of endomorphisms of linear spaces. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, California 1965/66), Vol II, Part I, pp. 55-61. Berkeley-Los Angeles: University of California 1966 · Zbl 0152.21402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.