×

zbMATH — the first resource for mathematics

Connected sum along the cycle operation of \(S^ p \times S^{n-p}\) on \(\pi\)-manifolds. (English) Zbl 0505.57010
MSC:
57R50 Differential topological aspects of diffeomorphisms
57R60 Homotopy spheres, Poincaré conjecture
57R95 Realizing cycles by submanifolds
57R55 Differentiable structures in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Bando and K. Katase: A remark on the ^-imbedding of homotopy spheres. Proc. Japan Acad., 45, 443-445 (1969). · Zbl 0189.24002
[2] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in euclidean space. Topology, 3, 173-181 (1965). · Zbl 0127.13702
[3] K. Katase: ^-imbeddings of homotopy spheres. Proc. Japan Acad., 44, 573-575 (1968). · Zbl 0189.24001
[4] K. Kawakubo: On the inertia groups of homology tori. J. Math. Soc. Japan, 21, 37-47 (1969). · Zbl 0176.21502
[5] J. Levine: A classification of differentiate knots. Ann. of Math., 82, 15- 50 (1965). · Zbl 0136.21102
[6] S. P. Novikov: Homotopically equivalent smooth manifolds I. Izv. Acad. Nauk. SSSR., Ser. Math., 28, 365-474 (1964); Amer. Math. Soc. Transl., 48(2), 271-396 (1965) (Eng. transl.). · Zbl 0151.32103
[7] De Sapio: Differential structures on a product of spheres. Comment. Math. Helv., 44, 61-69 (1969). · Zbl 0162.55303
[8] De Sapio: Differential structures on a product of spheres II. Ann. of Math., 89, 305-313 (1969). JSTOR: · Zbl 0204.56701
[9] R. Schultz: On the inertia group of a product of spheres. Trans. Amer. Math. Soc, 156, 137-153 (1971). · Zbl 0216.45401
[10] S. Smale: On the structures of manifolds. Amer. J. Math., 84, 378-399 (1962). JSTOR: · Zbl 0109.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.