Camacho, Cesar; Lins Neto, Alcidés The topology on integrable differential forms near a singularity. (English) Zbl 0505.58026 Publ. Math., Inst. Hautes Étud. Sci. 55, 5-35 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 24 Documents MSC: 37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\) 58A10 Differential forms in global analysis 58C25 Differentiable maps on manifolds 58K99 Theory of singularities and catastrophe theory Keywords:de Rham division theorem; Frobenius theorem; Lie group action; stability of integrable forms × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] C. Camacho, On Rk {\(\times\)} Zl-actions,Proc. Symp. Dyn. Syst., Editor M. Peixoto, Ac. Press (1971), pp. 23–70. [2] C. Camacho, A. Lins Neto, C r -structural stability of germs of integrable 1-forms,Atas do XI Colóquio Brasileiro de Matemática, vol. II (1977), pp. 565–567. [3] C. Camacho, N. Kuiper, J. Palis, The topology of holomorphic flows with singularity,Publ. Math. I.H.E.S.,48 (1978), pp. 5–38. · Zbl 0411.58018 [4] G. de Rham, Sur la division des formes et des courants par une forme linéaire,Comm. Math. Helvetici,28 (1954), pp. 346–352. · Zbl 0056.31601 · doi:10.1007/BF02566941 [5] I. Kupka, The singularities of integrable structurally stable Pfaffian forms,Proc. Nat. Acad. Sci. U.S.A.,52 (1964), pp. 1431–1432. · Zbl 0137.41404 · doi:10.1073/pnas.52.6.1431 [6] A. Lins N., Structural stability of C2-integrable forms,Ann. Inst. Fourier,27 (2) (1977), pp. 197–225. · Zbl 0356.58008 [7] B. Malgrange, Frobenius avec singularités I. Codimension un,Publ. Math. I.H.E.S.,46 (1976), pp. 163–173. · Zbl 0355.32013 [8] J.-F. Mattei, R. Moussu, Intégrales premières d’une forme de Pfaff analytique,Ann. Inst. Fourier,28 (4) (1978), pp. 229–347. [9] A. Medeiros, Structural stability of integrable differential forms,Springer Lec. Notes,597 (1977), pp. 395–428. · Zbl 0363.58007 [10] R. Moussu, Sur l’existence d’intégrales premières pour un germe de forme de Pfaff,Ann. Inst. Fourier,26 (2) (1976), pp. 171–220. · Zbl 0319.58002 [11] K. Saito, Calcul algébrique de la monodromie,Astérisque 7 et 8 (1973), pp. 195–211. · Zbl 0294.14005 [12] C. L. Siegel, Über die normalform analytischer differentialgleichungen in der nähe einer Gleichgewichtslösung,Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. (1952), pp. 21–30. · Zbl 0047.32901 [13] S. Sternberg, On the structure of local homeomorphisms of euclideann-space II,Am. J. of Math.,80 (1958), pp. 623–631. · Zbl 0083.31406 · doi:10.2307/2372774 [14] M. I. Camacho, Generic properties of homogeneous vector fields of degree two inR 3,An. Acad. Bras. Ciên.,51 (1) (1979), pp. 31–33. · Zbl 0405.58041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.