×

Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. (English) Zbl 0505.60054


MSC:

60G44 Martingales with continuous parameter

Citations:

Zbl 0252.60020
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramovitz, M; Stegun, I, ()
[2] Barlow, M.T; Yor, M, (semi-) martingale inequalities and local times, Z. wahrsch. verw. gebiete, 55, 237-254, (1981) · Zbl 0451.60050
[3] Bass, R, A representation of additive functionals of d-dimensional Brownian motion, (1981), preprint
[4] Billingsley, P, Convergence of probability measures, (1968), Wiley New York · Zbl 0172.21201
[5] Burkholder, D.L, Distribution function inequalities for martingales, Ann. probab., 1, 19-42, (1973) · Zbl 0301.60035
[6] Burkholder, D.L, A sharp inequality for martingale transforms, Ann. probab., 7, 858-863, (1979) · Zbl 0416.60047
[7] Burkholder, D.L; Gundy, R.F, Extrapolation and interpolation of quasi-linear operators on martingales, Acta math., 124, 249-304, (1970) · Zbl 0223.60021
[8] Clark, J.M.C, The representation of functionals of Brownian motion by stochastic integrals, Ann. math. statist., 41, 1282-1295, (1970) · Zbl 0213.19402
[9] Davis, B, On the L^{p}-norms of stochastic integrals and other martingales, Duke math. J., 43, 697-704, (1976) · Zbl 0349.60061
[10] Dubins, L; Schwarz, G, On continuous martingales, (), 913-916 · Zbl 0203.17504
[11] Fefferman, R; Gundy, R; Silverstein, M; Stein, E, Inequalities for ratios of functionals of harmonic functions, (1982), preprint · Zbl 0512.31008
[12] Garsia, A.M, The burgess Davis inequalities via Fefferman’s inequalities, Ark. mat., 11, n∘ 2, 229-237, (Dec. 1973)
[13] Garsia, A.M, ()
[14] Garsia, A.M, Combinatorial inequalities and smoothness of functions, Bull. amer. math. soc., 82, 157-170, (1976) · Zbl 0351.26005
[15] Garsia, A.M; Rodemich, E; Rumsey, H, A real variable lemma and the continuity of paths of some Gaussian processes, Indiana univ. math. J., 20, 565-578, (1970/1971) · Zbl 0252.60020
[16] Gundy, R.F, The density of the area integral, (1982), preprint · Zbl 0544.31012
[17] Heinkel, B, Mesures majorantes et régularité des fonctions aléatoires, () · Zbl 0519.60038
[18] {\scS. D. Jacka}, A local time inequality for martingales, Sem. Prob.{\bf17}, in press.
[19] Knight, F.B, Random walks and the sojourn density process of Brownian motion, T.a.m.s., 109, 56-86, (1963) · Zbl 0119.14604
[20] Lenglart, E, Relation de domination entre deux processus, Ann. inst. H. Poincaré, 13, n∘ 2, 171-179, (1977) · Zbl 0373.60054
[21] Lenglart, E; Lépingle, D; Pratelli, M, Présentation unifiée de certaines inégalités de la théorie des martingales, () · Zbl 0427.60042
[22] Lépingle, D, La variation d’ordre p des semi-martingales, Z. wahrsch. verw. gebiete, 36, 295-316, (1976) · Zbl 0325.60047
[23] Meyer, P.A, Un cours sur LES intégrales stochastiques, () · Zbl 0374.60070
[24] Meyer, P.A, Flot d’une équation différentielle stochastique (d’après Malliavin, bismut, kunita), () · Zbl 0461.60076
[25] Neveu, J, Bases mathematiques du calcul des probabilités, (1970), Masson Paris · Zbl 0203.49901
[26] Neveu, J, Notes sur l’intégrale stochastique, ()
[27] Novikov, A.A, On moment inequalities and identities for stochastic integrals, (), 333-339
[28] Novikov, A.A, On stopping times for a Wiener process, Theory probab. appl., 16, 449-456, (1971) · Zbl 0258.60037
[29] Ray, D, Sojourn times of diffusion processes, Illinois J. math., 7, 615-630, (1963) · Zbl 0118.13403
[30] Sekiguchi, T, BMO-martingales and inequalities, Tôhoku math. J., 31, 355-358, (1979) · Zbl 0441.60049
[31] Stroock, D.W; Varadhan, S.R.S, Multidimensional diffusion processes, () · Zbl 1316.60124
[32] Yor, M, Sur la continuité des temps locaux associés à certaines semi-martingales, (), 23-26
[33] Yor, M, Application de la relation de domination à certains renforcements des inégalités de martingales, () · Zbl 0479.60050
[34] Itô, K; McKean, H.P, Diffusion processes and their sample paths, (1965), Springer-Verlag Berlin/New York · Zbl 0127.09503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.