×

zbMATH — the first resource for mathematics

Finite elements and characteristics for some parabolic-hyperbolic problems. (English) Zbl 0505.65055

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
35Q05 Euler-Poisson-Darboux equations
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Thomasset, F. Finite element methods for Navier-Stokes equations, VKI Lecture Series, 25-29 March 1980
[2] Zienckiewicz, O.; Heinrich, J.; Gallagher, The finite element method and convection problem in fluid mechanics, Finite elements in fluids, 3, (1978), Wiley New York
[3] Fortin, M.; Thomasset, F., Mixed finite element methods for incompressible flow problems, J. comp. phys., 31, 113, (1979) · Zbl 0395.76023
[4] Tabata, M., A finite element approximation corresponding to the upwind differencing, Mem. numer. math., 1, 47, (1977) · Zbl 0358.65102
[5] Ukeguchi, N.; Sakata, H.; Adachi, T., On the numerical analysis of compressible flow problems by the modified flic method, Comput. fluids, 8, 251, (1980) · Zbl 0437.76058
[6] Bardos, C.; Bercovier, M.; Pironneau, O., The vortex method with finite elements, Math. comp., 36, 119, (1981) · Zbl 0488.65049
[7] Benque, J.P. et al. A finite element method for Navier- Stokes equations, Proc. 3rd Int. Conf. finite elements in flow problems, Banff Alberta, Canada, 10-13 June 1980
[8] Pironneau, O., On the transport diffusion algorithm, Numer. math., 38, 309, (1982) · Zbl 0505.76100
[9] Douglas, J.; Russel, T.F., Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. numer. anal., 19, 5, 877, (1982)
[10] Temam, R., Theory and numerical analysis of the Navier-Stokes equations, (1977), North Holland, Amsterdam
[11] Crouzeix, M.; Raviart, P.A., Conforming and non-conforming finite element methods for solving the stationary Stokes equations, R.a.i.r.o., 33-76, (1973), R-3 · Zbl 0302.65087
[12] Crouzeix, M., Proc. journees elements finis, (1976), University of Rennes
[13] Hecht, F., Construction d’une base á divergence nulle pour un élément fini non conforme de degré 1 dans R^3, R.a.i.r.o., 15, 2, 119, (1981) · Zbl 0471.76028
[14] Hood, P.; Taylor, G., ()
[15] Hecht, F. Thesis Doct. 3e cycle University of Paris 6, 1980
[16] Bercovier, M., Perturbation of mixed variational problems, R.a.i.r.o., 12, 211, (1978) · Zbl 0428.65059
[17] Huyakorn, P.S., A comparison of various mixed-interpolation finite elements for the Navier-Stokes equation, Comput. fluids, 6, 25, (1978) · Zbl 0381.76024
[18] Christiansen, J., Numerical solution of hydrodynamics by the method of point vortices, J. comp. phys., 13, 863, (1973)
[19] Baker, G., The cloud and cell technique, J. comp. phys., 95, 75, (1979)
[20] McLaughin, D.; Papanicolaou, G.; Pironneau, O., Convection of microstructure, Proc. numer. math. for eng. Versailles, (1981), to appear
[21] Bernadi, C., Méthodes d’éléments finis mixtes pour LES équations de Navier-Stokes, Thèse 3e cycle, université Paris 6, (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.