×

zbMATH — the first resource for mathematics

Domain decomposition methods for nonlinear problems in fluid dynamics. (English) Zbl 0505.76068

MSC:
76H05 Transonic flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bristeau, M.O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O.; Poirier, G., Application of optimal control and finite element methods to the calculation of transonic flows and incompressible viscous flows, (), 203-312 · Zbl 0449.76002
[2] Glowinski, R.; Mantel, B.; Periaux, J.; Pironneau, O.; Poirier, G., An efficient preconditioned conjugate gradient method applied to nonlinear problems in fluid dynamics, () · Zbl 0445.65098
[3] Bristeau, M.O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O.; Poirier, G., Transonic flow simulations by finite elements and least squares methods, (), 11-29 · Zbl 0478.76073
[4] Glowinski, R.; Mantel, B.; Periaux, J.; Perrier, P.; Pironneau, O., On an efficient new preconditioned conjugate gradient method. application to the in core solution of the Navier-Stokes equations via nonlinear least squares and finite element methods, (), 229-255 · Zbl 0444.76020
[5] Glowinski, R.; Mantel, B.; Periaux, J., Numerical solution of the time dependent Navier-Stokes equations for incompressible viscous fluids by finite elements and alternating direction methods, () · Zbl 0564.76041
[6] Heller, D., A survey of parallel algorithms in numerical linear algebra, SIAM rev., 20, 740-777, (1978) · Zbl 0408.68033
[7] Morice, P., Calcul paralléle et décomposition dans la résolution d’équations aux dérivées partielles de type elliptique, INRIA rept. INF. 7214/72017, (1972)
[8] Frailong, J.M.; Pakleza, J., Resolution of general partial differential equations on a fixed size SIMD/MIMD large cellular processor, ()
[9] Lions, P.L., Interpretation stochastique de la méthode alternée de Schwarz, C.R. acad. sci. Paris, 286 A, 325-328, (1978) · Zbl 0375.60086
[10] Glowinski, R.; Pironneau, O., Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM rev., 21, 167-212, (1979) · Zbl 0427.65073
[11] Glowinski, R.; Pironneau, O., On numerical methods for the Stokes problem, (), 243-264 · Zbl 0415.76024
[12] Necas, J., LES Méthodes directes en théorie des équations elliptiques, (1967), Masson Paris · Zbl 1225.35003
[13] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[14] Oden, J.R.; Reddy, J.N., An introduction to the mathematical theory of finite elements, (1976), Wiley New York · Zbl 0336.35001
[15] Glowinski, R.; Lions, J.L.; Tremolieres, R., ()
[16] Glowinski, R.; Lions, J.L.; Tremolieres, R., Numerical analysis of variational inequalities, (1981), North-Holland Amsterdam · Zbl 0508.65029
[17] Bensoussan, A.; Lions, J.L.; Temam, R., Sur LES méthodes décomposition de décentralisation de coordination et applications, (), 133-257 · Zbl 0275.90042
[18] Lemonnier, P., Résolution numérique d’équation aux dérivées partielles par décomposition et coordination, (), 191-239 · Zbl 0268.65063
[19] Lions, J.L., Controle optimal des systèmes gouvernés par des équations aux Dérivées partielles, (1968), Dunod Paris · Zbl 0179.41801
[20] R. Glowinski, P.L. Lions and J. Periaux, Solution of boundary value problems by domain decomposition methods (to appear).
[21] Daniel, J., The approximate minimization of functionals, (1970), Prentice-Hall Englewood Cliffs, NJ
[22] Bristeau, M.O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O., On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (I). least squares formulations and conjugate gradient solution of the continuous problems, Comput. meths. appl. mech. engrg., 17/18, 619-657, (1979) · Zbl 0423.76047
[23] Glowinski, R., Numerical methods for nonlinear variational problems, (1983), Springer Berlin · Zbl 0612.76033
[24] Cea, J.; Geymonat, G., Une méthode de linéarisation via l’optimisation, (), 431-451 · Zbl 0272.65065
[25] Lozi, R., Analyse numérique de certains problèmes de bifurcation, ()
[26] Polak, E., Computational methods in optimization, (1971), Academic Press New York · Zbl 0257.90055
[27] Powell, M.-J.-D., Restart procedure for the conjugate gradient method, Math. programming, 12, 148-162, (1977)
[28] Landau, L.; Lifchitz, E., Mécanique des fluides, (1953), Mir Moscow · Zbl 0144.47605
[29] Poirier, G., Traitements numériques en éléments finis de la condition d’entropie des équations transoniques, ()
[30] Wilde, D.J.; Beightler, C.S., Foundations of optimization, (1967), Prentice-Hall Englewood Cliffs, NJ · Zbl 0189.19702
[31] Periaux, J., Résolution de quelques problèmes non linéaires en aérodynamique par des méthodes d’éléments finis et de moindres carrés, ()
[32] Perronnet, A., The club MODULEF: a library of subroutines for finite element analysis, (), 127-153 · Zbl 0396.65071
[33] Dinh, Q.V., Simulation numérique en éléments finis d’écoulements de fluides visqueux incompressibles par une méthode de décomposition de domaines sur processeurs vectoriels, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.