×

zbMATH — the first resource for mathematics

Les modalites de la correction totale. (French) Zbl 0506.03004

MSC:
03B45 Modal logic (including the logic of norms)
03D05 Automata and formal grammars in connection with logical questions
Software:
Lucid
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] E. ASHCROFTet W. WADGE, Lucid, a Non Procedural Language with Iteration, Com. A.C.M., vol. 20, n^\circ 7, July 1977, p. 519-526. Zbl0358.68033 · Zbl 0358.68033
[2] E. ASHCROFTet W. WADGE, Intermittent Assertion Proofs in Lucid, I.F.I.P. 77, p. 723-726. Zbl0363.68021 MR474941 · Zbl 0363.68021
[3] BURSTALL, Program Proving as Hand Simulation with a Little Induction, I.F.I.P. 74, p. 308-312. Zbl0299.68012 MR448980 · Zbl 0299.68012
[4] R. CARNAP, Modalities and Quantification, J.S.L., vol. 11, n^\circ 2, 1946, p. 33-64. Zbl0063.00713 MR19562 · Zbl 0063.00713
[5] E. ENGELER, Algoritmic Properties of Structures, Math. Sys. The., vol. 1, n^\circ 3, p. 183-185. MR224473 · Zbl 0202.00802
[6] P. ENJALBERT, Systèmes de déduction pour les arbres et les schémas de programmes, R.A.I.R.O. Inform. Théor., vol. 14, n^\circ 3, 1980, p. 247-278. Zbl0441.68007 MR593490 · Zbl 0441.68007
[7] FARIÑAS DEL CERRO, Un principe de résolution en logique modale (à paraître). Zbl0566.03007 · Zbl 0566.03007
[8] FLOYD, Assigning Meaning to Programs, Proc. Amer. Math. Soc. Symp. in App. Math., vol. 19, 1967, p. 19-31. Zbl0189.50204 MR235771 · Zbl 0189.50204
[9] D. HAREL, First-Order Dynamic Logic, Lectures Notes in Computer Science, Springer Verlag, n^\circ 68. Zbl0403.03024 MR567695 · Zbl 0403.03024
[10] HAREL, KOZEN et PARIKH, Process Logic, Expressiveness, Decidebility, Completeness, F.O.C.S. 80, p. 129-142. MR596055
[11] HOARE, An Axiomatic Basic of Computer Programming, Com. A.C. M., vol.12, n^\circ 10, 1969. Zbl0179.23105 · Zbl 0179.23105
[12] HUGHES et CRESSWELL, An Introduction to Modal Logic, Mathuem et Co., London, 1978. Zbl0205.00503 · Zbl 0205.00503
[13] KRÖGER, LAR: A Logic for Algohthmic Reasoning, Acta Informatica, 1977, p. 243-266. Zbl0347.68016 · Zbl 0347.68016
[14] Z. MANNA, Properties of Programs and First Order Predicate Calculus, J.A.C.M., vol. 16, n^\circ 2, 1969, p. 244-255. Zbl0198.22001 · Zbl 0198.22001
[15] Z. MANNA, Logics of Programs, Proc, I.F.I.P. 80, North-Holland, p, 41-52.
[16] Z. MANNAet A. PNUELI, The Modal Logic of Programs, Memo AIM-330 Stanford A.I. Laboratory, Sept. 1979.
[17] Z. MANNAet R. WALDINGER, Is ”sometime” sometime better than ”always”?: Intermittent Assertions in Proving Program Correcteness, Com. A.C.M., vol. 21, n^\circ 2, 1978, p. 159-172. Zbl0367.68011 MR483642 · Zbl 0367.68011
[18] MCARTHUR, Tense Logic, Reidel Publ., 1976. Zbl0371.02013 MR536334 · Zbl 0371.02013
[19] MCKINSEY, et TARSKI, Some Theorems about the Sentential Calculi of Lewis and Heyting, J.S.L., vol. 13, 1948, p. 1-15. Zbl0037.29409 MR24396 · Zbl 0037.29409
[20] MINC, Communication personnelle.
[21] ORLOWSKA, Resolution Systems and their Applications, I, II Fundamenta Informaticae, p. 235-267, p. 333-362. Zbl0472.68052 MR591776 · Zbl 0472.68052
[22] W. T. PARRY, Modalities in the Survey System of Strict Implication, J.S.L., vol. 4, 1939, p. 131-154. Zbl0023.09902 JFM65.1105.04 · Zbl 0023.09902
[23] V. R. PRATT, Semantical Considerations on Floyd-Hoare Logic, Proc. 17th Ann. I.E.E.E. Symp. on Foundations of Comp. Sc., 1976, p. 109-121. MR502164
[24] RASIOWA et SIKORSKI, The Mathematics of Metamathematics, Warszowa, 1963. Zbl0122.24311 · Zbl 0122.24311
[25] ROBINSON, A Machine Oriented Logic Based on the Resolution Principle, J.A.C.M., vol.12, 1965, p. 23-41. Zbl0139.12303 MR170494 · Zbl 0139.12303
[26] SALWICKI, Formatized Algorithme Language, Bull. Ac. Pol. Sc., vol. 18, n^\circ 5, 1970, p. 227-232. Zbl0198.02801 MR270852 · Zbl 0198.02801
[27] M. VAN EMDEN, Verification Conditions as Programs, Automate Languages and Programming, MICHEALSON and MILNER, éd., Edinburg Univ. Press, 1976, p. 99-119. Zbl0403.68015 · Zbl 0403.68015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.