On the Kodaira dimension of the moduli space of curves. (English) Zbl 0506.14016


14H10 Families, moduli of curves (algebraic)
14D20 Algebraic moduli problems, moduli of vector bundles
14E05 Rational and birational maps
14H15 Families, moduli of curves (analytic)
14C22 Picard groups
14D10 Arithmetic ground fields (finite, local, global) and families or fibrations
Full Text: DOI EuDML


[1] Anderson, G.: Theta functions and holomorphic differential forms on compact quotients of bounded symmetric domains. Ph.D. Thesis, Princeton, 1980
[2] Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Topics in the theory of algebraic curves. In Princeton Univ. Press (1982 in press) · Zbl 0559.14017
[3] Brylinski, J.-L.: Propriétés de ramification à l’infini du groupe modulaire de Teichmüller. Ann. Ec. Norm. Sup.,12, 295 (1979) · Zbl 0432.14004
[4] Freitag, E.: Der Körper der Siegelschen Modulfunktionen. Abh. Math. Sem. Univ. Hamburg, · Zbl 0402.10028
[5] Freitag, E.: Die Kodairadimension von Körpern automorpher Funktionen. Crelle,296, 162 (1977) · Zbl 0366.10023
[6] Fulton, W.: Hurwitz schemes and the irreducibility of moduli of algebraic curves, Annals of Math.,90, 542 (1969) · Zbl 0194.21901
[7] Griffiths, P., Harris, J.: On the variety of special linear systems on a general algebraic curve. Duke Math. J.,47, 233 (1980) · Zbl 0446.14011
[8] Grothendieck, A., Murre, J.P.: The tame fundamental group of a formal neighborhood of a divisor with normal crossings on a scheme. Lecture Notes Berlin-Heidelberg-New York: Springer Vol. 208. 1971 · Zbl 0216.33001
[9] Kleiman, S., Laksov, D.: Another proof of the existence of special divisors. Acta Math.,132, 163 (1974) · Zbl 0286.14005
[10] Knudsen, F.: The projectivity of the moduli space of stable curves. Math. Scand. (in press 1982)
[11] MacDonald, I.G.: Symmetric products of an algebraic curve. Topology,1, 319 (1962) · Zbl 0121.38003
[12] Mumford, D.: Hirzebruch’s Proportionality Principle in the non-compact case. Inv. Math.,42, 239 (1977) · Zbl 0365.14012
[13] Mumford, D.: Stability of projective varieties. L’Ens. Math.,23, 39 (1977) · Zbl 0363.14003
[14] Murre, J.P.: An introduction to Grothendieck’s of the fundamental group, Tata Institute Lecture Notes; Bombay (1967) · Zbl 0198.26202
[15] Reid, M.: Canonical 3-folds. Les Journées de Géometrie Algébrique d’Angers, 1979, A. Beauville, ed.
[16] Stillman, M.: PhD Thesis, Harvard, 1983
[17] Tai, Y.-S.: Pluri-canonical differentials on the Siegel modular variety. Invent. Math. (in press 1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.