Shelstad, D. L-indistinguishability for real groups. (English) Zbl 0506.22014 Math. Ann. 259, 385-430 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 55 Documents MSC: 22E30 Analysis on real and complex Lie groups 22E15 General properties and structure of real Lie groups 43A80 Analysis on other specific Lie groups Keywords:real reductive algebraic group; tempered representation; L-packet; L- indistinguishability; orbital integral Citations:Zbl 0421.12015 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Arthur, J.: On the invariant integrals associated to weighted orbital integrals (preprint) [2] Borel, A.: AutomorphicL-functions. Proc. Sympos. Pure Math., Vol. XXXIII, Part 2 pp. 27-61. Providence: Amer. Math. Soc. 1979 [3] Harish-Chandra: Harmonic analysis on real reductive groups. I. J. Functional Analysis19, 104-204 (1975) · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8 [4] Harish-Chandra: Harmonic analysis on real reductive groups. III. Ann. Math.104, 117-201 (1976) · Zbl 0331.22007 · doi:10.2307/1971058 [5] Hecht, H., Schmid, W.: A proof of Blattner’s conjecture. Invent. Math.31, 129-154 (1975) · Zbl 0319.22012 · doi:10.1007/BF01404112 [6] Knapp, A., Zuckerman, G.: Classification of irreducible tempered representations of semisimple Lie groups. Proc. Nat. Acad. Sci. USA73, 2178-2180 (1976) · Zbl 0329.22013 · doi:10.1073/pnas.73.7.2178 [7] Knapp, A., Zuckerman, G.: Normalizing factors, tempered representations andL-groups. Proc. Sympos. Pure Math., Vol. XXXIII, Part 1, pp. 93-105. Providence: Amer. Math. Soc. 1979 · Zbl 0414.22017 [8] Labesse, J.-P., Langlands, R.P.:L-indistinguishability for SL(2). Canad. J. Math.31, 726-785 (1979) · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3 [9] Langlands, R.P.: Problems in the theory of automorphic forms, lectures in modern analysis and applications. Lecture Notes in Mathematics, Vol. 170, pp. 18-86. Berlin, Heidelberg, New York: Springer 1970 [10] Langlands, R.P.: On the classification of irreducible representations of real algebraic groups (preprint) · Zbl 0741.22009 [11] Langlands, R.P.: Stable conjugacy: definitions and Lemmas. Canad. J. Math.31, 700-725 (1979) · Zbl 0421.12013 · doi:10.4153/CJM-1979-069-2 [12] Langlands, R.P.: On the zeta-functions of simple Shimura varieties. Canad. J. Math.31, 1121-1216 (1979) · Zbl 0444.14016 · doi:10.4153/CJM-1979-102-1 [13] Shelstad, D.: Notes onL-indistinguishability (based on a lecture of R.P. Langlands). Proc. Sympos Pure Math., Vol. XXXIII, Part 2, pp. 193-203. Providence: Amer. Math. Soc. 1979 [14] Shelstad, D.: Characters and inner forms of a quasi-split group over ?. Compositio Math.39, 11-45 (1979) · Zbl 0431.22011 [15] Shelstad, D.: Orbital integrals and a family of groups attached to a real reductive group. Ann. Sci. École Norm. Sup.12, 1-31 (1979) · Zbl 0433.22006 [16] Shelstad, D.: Embeddings ofL-groups. Canad. J. Math.33, 513-558 (1981) · doi:10.4153/CJM-1981-044-4 [17] Speh, B., Vogan, D.: Reducibility of generalized principal series representations. Acta Math.145, 227-299 (1980) · Zbl 0457.22011 · doi:10.1007/BF02414191 [18] Steinberg, R.: Regular elements of semi-simple algebraic groups. Publ. Math. I.H.E.S.25, 49-80 (1965) [19] Vogan, D.: The algebraic structure of the representations of semi-simple Lie groups I. Ann. Math.109, 1-60 (1979) · Zbl 0424.22010 · doi:10.2307/1971266 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.