×

zbMATH — the first resource for mathematics

Pettis integration. (English) Zbl 0506.28007

MSC:
28B05 Vector-valued set functions, measures and integrals
46G10 Vector-valued measures and integration
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. · Zbl 0369.46039
[2] D. H. Fremlin, Pointwise compact sets of measurable functions, Manuscripta Math. 15 (1975), 219 – 242. · Zbl 0303.28006
[3] David H. Fremlin and Michel Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117 – 142. · Zbl 0393.28005
[4] Robert C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101 – 119. · Zbl 0127.32502
[5] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277 – 304. · Zbl 0019.41603
[6] R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114 – 145. · Zbl 0022.31902
[7] R. S. Phillips, A decomposition of additive set functions, Bull. Amer. Math. Soc. 46 (1940), 274 – 277. · Zbl 0024.30304
[8] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254. · Zbl 0152.04301
[9] W. Sierpiński, Hypothèse du continu, Monog. Mat., Warsaw, 1934. · JFM 60.0035.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.