Geitz, Robert F. Pettis integration. (English) Zbl 0506.28007 Proc. Am. Math. Soc. 82, 81-86 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 38 Documents MSC: 28B05 Vector-valued set functions, measures and integrals 46G10 Vector-valued measures and integration Keywords:weakly measurable; Pettis integrable; Bochner integrable; perfect measure; Vitali’s convergence theorem; strongly integrable PDFBibTeX XMLCite \textit{R. F. Geitz}, Proc. Am. Math. Soc. 82, 81--86 (1981; Zbl 0506.28007) Full Text: DOI References: [1] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. · Zbl 0369.46039 [2] D. H. Fremlin, Pointwise compact sets of measurable functions, Manuscripta Math. 15 (1975), 219 – 242. · Zbl 0303.28006 · doi:10.1007/BF01168675 [3] David H. Fremlin and Michel Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117 – 142. · Zbl 0393.28005 · doi:10.1007/BF01214191 [4] Robert C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101 – 119. · Zbl 0127.32502 · doi:10.1007/BF02759950 [5] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277 – 304. · Zbl 0019.41603 [6] R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114 – 145. · Zbl 0022.31902 [7] R. S. Phillips, A decomposition of additive set functions, Bull. Amer. Math. Soc. 46 (1940), 274 – 277. · Zbl 0024.30304 [8] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254. · Zbl 0152.04301 [9] W. Sierpiński, Hypothèse du continu, Monog. Mat., Warsaw, 1934. · JFM 60.0035.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.