×

zbMATH — the first resource for mathematics

Existence and non-existence results for semilinear elliptic problems in unbounded domains. (English) Zbl 0506.35035

MSC:
35J60 Nonlinear elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rabinowitz, Eigenvalues of nonlinear problems, C.I.M.E. (1974)
[2] Pohozaev, Soviet Math. Dokl. 5 pp 1408– (1965)
[3] Lions, On positive solutions of semilinear elliptic equations, to appear (1981)
[4] DOI: 10.1512/iumj.1981.30.30012 · Zbl 0522.35036 · doi:10.1512/iumj.1981.30.30012
[5] Berestycki, J. Analyse Math. 38 pp 144– (1980) · Zbl 0518.35034 · doi:10.1007/BF03033880
[6] Berestycki, Variational Inequalities (1979)
[7] Berestycki, Bifurcation phenomena in mathematical physics and related topics (1980)
[8] Berestycki, C. R. Acad. Set. Paris 287 pp 503– (1978)
[9] DOI: 10.1016/0022-1236(73)90051-7 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[10] Amann, Lecture Notes in Mathematics 53 pp 1– (1975)
[11] DOI: 10.1007/BF01221125 · Zbl 0425.35020 · doi:10.1007/BF01221125
[12] Gidas, Nonlinear Partial Differential Equations in Engineering and Applied Science (1980) · Zbl 0444.35038
[13] Esteban, Nonlinear elliptic problems in strip-like domains, to appear, see also thèse de 3 ème cycle VI (1981)
[14] DOI: 10.5802/afst.553 · Zbl 0458.35040 · doi:10.5802/afst.553
[15] DOI: 10.1007/BF01609421 · doi:10.1007/BF01609421
[16] DOI: 10.1007/BF00250684 · Zbl 0249.35029 · doi:10.1007/BF00250684
[17] DOI: 10.1080/03605307708820041 · Zbl 0358.35032 · doi:10.1080/03605307708820041
[18] DOI: 10.1016/0022-1236(72)90001-8 · Zbl 0224.35061 · doi:10.1016/0022-1236(72)90001-8
[19] DOI: 10.1007/BF01626517 · Zbl 0356.35028 · doi:10.1007/BF01626517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.