zbMATH — the first resource for mathematics

On the positivity of the effective action in a theory of random surfaces. (English) Zbl 0506.47031

47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
26D10 Inequalities involving derivatives and differential and integral operators
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47A10 Spectrum, resolvent
Full Text: DOI
[1] Onofri, E., Virasoro, M.: Nucl. Phys.B201, 159-175 (1982) · doi:10.1016/0550-3213(82)90378-9
[2] Berger, M. S.: J. Diff. Geom.5, 325-332 (1971)
[3] Moser, J.: Indiana Univ. Math. J. 20 (11), 1077-1092 (1971) · Zbl 0213.13001 · doi:10.1512/iumj.1971.20.20101
[4] Moser, J.: On a non-linear problem in differential geometry. In: Dynamical Systems, Peixoto, M. M. (ed.) New York: Academic Press Inc., 1973 pp. 273-280
[5] Aubin, T.: J. Funct. Anal.32, 148-174 (1979) · Zbl 0411.46019 · doi:10.1016/0022-1236(79)90052-1
[6] Berger, M. S.: Non-linearity and functional analysis. New York: Academic Press Inc., 1977, Chap. 6 and references therein
[7] Kazdan, J. L., Warner, F. W.: Ann. Math.99, 14-47 (1974) · Zbl 0273.53034 · doi:10.2307/1971012
[8] Gluck, H.: Bull. Am. Math. Soc.81, 313-329 (1975) · Zbl 0299.53025 · doi:10.1090/S0002-9904-1975-13740-2
[9] Polyakov, A. M.: Phys. Lett.103B, 207-210 (1981)
[10] Hardy, H. G., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge: Cambridge University Press, 2nd edn. 1952
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.