×

zbMATH — the first resource for mathematics

On the increments of the Wiener process. (English) Zbl 0506.60082

MSC:
60J65 Brownian motion
60F15 Strong limit theorems
60G15 Gaussian processes
60G17 Sample path properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cabana, E.M., Wschebor, M.: An estimate for the tails of the distribution of the supremum for a class of multiparameter Gaussian processes. J. Appl. Probability 18, 536-541 (1981) · Zbl 0459.60045 · doi:10.2307/3213302
[2] Csörgo, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probability, 731-737 (1979) · Zbl 0412.60038
[3] Csörgo, M., Révész, P.: Strong approximations in Probability and Statistics. New York-San Francisco-London: Academic Press 1981 · Zbl 0539.60029
[4] Erdös, P.: On the law of iterated logarithm. Ann. Math. 43, 419-436 (1942) · Zbl 0063.01264 · doi:10.2307/1968801
[5] Ortega, J., Wschebor, M.: On the sequence of partial maxima of some random sequences. Stoch. Proc. Appl. To appear · Zbl 0523.60023
[6] Petrowski, I.: Über das Irrfahrtproblem. Math. Ann. 109, 425-439 (1933-34) · Zbl 0008.35603 · doi:10.1007/BF01449148
[7] Plackett, R.L.: A reduction formula for Normal multivariate integrals. Biometrika 41, 351-360 (1954) · Zbl 0056.35702
[8] Pickands, J. III: Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145, 51-73 (1969) · Zbl 0206.18802 · doi:10.1090/S0002-9947-1969-0250367-X
[9] Quails, C., Watanabe, H.: Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43, 580-596 (1973) · Zbl 0247.60031 · doi:10.1214/aoms/1177692638
[10] Révész, P.: On the increments of Wiener and related processes. Ann. Probability 10, 613-622 (1982) · Zbl 0493.60038 · doi:10.1214/aop/1176993771
[11] Slepian, D.: The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41, 463-501 (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.