×

zbMATH — the first resource for mathematics

On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface. (English) Zbl 0506.73012
MSC:
74F05 Thermal effects in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
49J40 Variational inequalities
74A15 Thermodynamics in solid mechanics
35K05 Heat equation
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] B. A. Boley J. H. Weiner: Theory of Thernal Stresses. Wiley & Sons, Inc., New York 1960. · Zbl 0095.18407
[2] C. Dafermos: On the Existence and the Asymptotic Stability of Solutions to the Equations of Linear Thermoelasticity. Arch. Rat. Mech. Anal., 29 (1968), 241 - 271. · Zbl 0183.37701 · doi:10.1007/BF00276727
[3] G. Duvaut J. L. Lions: Problèmes unilateraux dans la théorie de la flexion forte des plaques, I: Le cas stationaire. J. Méch., 13 (1974), 51 - 74. · Zbl 0294.73060
[4] G. Duvaut J. L. Lions: Problèmes unilateraux dans la théorie de la flexion forte des plaques, II: Le cas d’évolution. J. Méch., 13 (1974), 245-266. · Zbl 0329.73052
[5] G. Duvaut: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rat. Mech. Anal., 46 (1972), 241-279. · Zbl 0264.73027 · doi:10.1007/BF00250512
[6] G. Duvaut: Les inéquations en méchanique et en physique. Dunod, Paris 1972. · Zbl 0298.73001
[7] S. A. Gribanov V. N. Ogibalov: Thermostability of Plates and Shells. (in Russian). Izd. Mosc. Univ. 1968.
[8] I. Hlaváček J. Naumann: Inhomogeneous Boundary Value Problems for the von Kármán’s Equations, I. Apl. Matem., 19 (1974), 253 - 269.
[9] I. Hlaváček J. Naumann: Inhomogeneous Boundary Value Problems for the von Kármán’s Equations, II. Apl. Matem., 20 (1975), 280-297.
[10] I. Hlaváček J. Nečas: On Inequalities of Korn’s Type, I: Boundary value problems for elliptic systems of partial differential equations, II: Applications to linear elasticity. Arch. Rat. Mech. Anal., 36 (1970), 305-334. · Zbl 0193.39001
[11] R. Hünlich J. Naumann: On General Boundary Value Problems and Duality in Linear Elasticity, I. Apl. Matem., 23 (1978). · Zbl 0401.73025
[12] J. L. Lions E. Magénès: Problèmes aux limites non homogènes et applications. vol. 1. Dunod, Paris 1968.
[13] J. Naumann: On Some Unilateral Boundary Value Problems for the von Kármán’s Equations, part I: The coercive case. Apl. Matem., 20 (1975), 96-125. · Zbl 0311.73029 · eudml:14901
[14] J. Naumann: On Some Unilateral Boundary Value Problems in Non-linear Plate Theory. Beiträge zur Analysis, 10 (1977), 119-134. · Zbl 0369.35020
[15] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003
[16] W. Nowacki: Theory of Elasticity. (in Russian). Mir, Moscow 1975. · Zbl 0385.73007
[17] W. Nowacki: Thermoelasticity. Intern. Series of Monographs on Aeronautics and Astronautics, Div. I: Solid and Structural Mechanics, Pergamon Press 1962. · Zbl 0227.73009
[18] W. Nowacki: Dynamical Problems of Thermoelasticity. (in Russian). Mir, Moscow 1970. · Zbl 0227.73009
[19] K. Washizu: Variational Methods in Elasticity and Plasticity. Pergamon Press 1974. · Zbl 0164.26001
[20] H.-U. Wenk: Functional-analytical Investigations on Unilateral Problems in Plate Theory. (in German). Thesis A, Humboldt-Univ., Berlin 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.