×

On broadcast channels with side information under fidelity criteria. (English) Zbl 0506.94004

MSC:

94A05 Communication theory
94A40 Channel models (including quantum) in information and communication theory
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] T. Berger: Rate Distortion Theory: A Mathematical Basis for Data Compression. Prentice Hall, Englewood Cliffs 1971. · Zbl 0200.00001
[2] R. Courant, D. Hilbert: Methods of Mathematical Physics. Vol. 1. Wiley - Interscience, New York 1953. · Zbl 0053.02805
[3] T. M. Cover: Broadcast channels. IEEE Trans. Inform. Theory IT-18 (1972), 2-14. · Zbl 0228.94008
[4] P. M. Ebert: An extension of rate distortion theory to confusion matrices. IEEE Trans. Inform. Theory IT-14 (1968), 6-11. · Zbl 0165.53402
[5] E. C. van der Meulen: Random coding theorems for the general discrete memoryless broadcast channel. IEEE Trans. Inform. Theory IT-21 (1975), 180-190. · Zbl 0311.94013
[6] V. Priya: Basic equations for source coding with side information at the decoder and encoder. Kybernetika 14 (1978), 5, 328-338. · Zbl 0402.94022
[7] I. M. Ryshikandl. S. Gradstein: Tables of Series, Products and Integrals. Deutscher Verlag der Wissenschaften, Berlin 1957.
[8] H. Sato: An outer bound to the capacity region of broadcast channels. IEEE Trans. Inform. Theory IT-24 (1978), 374-377. · Zbl 0378.94013
[9] B. D.Sharma, V. Priya: Multiple channels under fidelity criteria. Kybernetika 15 (1979), 6, 446-463. · Zbl 0434.94007
[10] B. D. Sharma, V. Priya: Souce coding theorem and its converse with side information. Inform. Sci. 77 (1979), 169-176. · Zbl 0442.94009
[11] B. D. Sharma, V. Priya: Variational equations for a general and gaussian channel with side information. J. Combin. Inform. System Sci. 4 (1979), 23 - 31. · Zbl 0403.94007
[12] A. D. Wyner, J. Ziv: The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inform. Theory IT-22 (1976), 1-10. · Zbl 0324.94010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.