zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Eigenvalues of large sample covariance matrices of spiked population models. (English) Zbl 1220.15011
Authors’ abstract: “We consider a spiked population model, proposed by Johnstone, in which all the population eigenvalues are one except for a few fixed eigenvalues. The question is to determine how the sample eigenvalues depend on the non-unit population ones when both sample size and population size become large. This paper completely determines the almost sure limits of the sample eigenvalues in a spiked model for a general class of samples.”

15A18Eigenvalues, singular values, and eigenvectors
15B52Random matrices
60F17Functional limit theorems; invariance principles
62P20Applications of statistics to economics
62H99Multivariate analysis
Full Text: DOI arXiv
[1] Bai, Z. D.: Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. sinica 9, 611-677 (1999) · Zbl 0949.60077
[2] Bai, Z. D.; Silverstein, J. W.: No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. probab. 26, No. 1, 316-345 (1998) · Zbl 0937.60017
[3] Bai, Z. D.; Silverstein, J. W.: Exact separation of eigenvalues of large dimensional sample covariance matrices. Ann. probab. 27, No. 3, 1536-1555 (1999) · Zbl 0964.60041
[4] Bai, Z. D.; Yin, Y. Q.: Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. Ann. probab. 21, 1275-1294 (1993) · Zbl 0779.60026
[5] J. Baik, Painlevé formulas of the limiting distributions for non-null complex sample covariance matrices \langle http://xxx.lanl.gov/abs/math.PR/0504606\rangle .
[6] J. Baik, G. Ben Arous, S. Péché, Phase transition of the largest eigenvalue for non-null complex sample covariance matrices, Ann. Probab., 2005, to appear.
[7] J. Baik, J.W. Silverstein, Distributional behavior of the stray eigenvalues of large sample matrices of spiked population models, in preparation.
[8] Buja, A.; Hastie, T.; Tibshirani, R.: Penalized discriminant analysis. Ann. statist. 23, 73-102 (1995) · Zbl 0821.62031
[9] Forrester, P. J.: The spectrum edge of random matrix ensembles. Nucl. phys. B 402, 709-728 (1993) · Zbl 1043.82538
[10] Geman, S.: A limit theorem for the norm of random matrices. Ann. probab. 8, No. 2, 252-261 (1980) · Zbl 0428.60039
[11] Horn, R.; Johnson, C.: Matrix analysis. (1985) · Zbl 0576.15001
[12] D. Hoyle, M. Rattray, Limiting form of the sample covariance eigenspectrum in PCA and kernel PCA, Proceedings of Neural Information Processing Systems, 2003, to appear.
[13] Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of math. 153, No. 2, 259-296 (2001) · Zbl 0984.15020
[14] Johnstone, I.: On the distribution of the largest principal component. Ann. statist. 29, 295-327 (2001) · Zbl 1016.62078
[15] Laloux, L.; Cizeau, P.; Potters, M.; Bouchaud, J.: Random matrix theory and financial correlations. Internat. J. Theoret. appl. Finance 3, No. 3, 391-397 (2000) · Zbl 0970.91059
[16] Y. Malevergne, D. Sornette, Collective origin of the coexistence of apparent RMT noise and factors in large sample correlation matrices \langle http://xxx.lanl.gov/abs/cond-mat/0210115\rangle .
[17] Marcenko, V. A.; Pastur, L. A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR-sb. 1, 457-486 (1967)
[18] D. Paul, Asymptotic behaviour of the largest eigenvalues of sample covariance matrix when true covariance is a finite perturbation of identity, 2004, preprint.
[19] S. Péché, Universality of local eigenvalue statistics for random sample covariance matrices, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, 2003.
[20] Plerous, V.; Gopikrishnan, P.; Rosenow, B.; Amaral, L.; Guhr, T.; Stanley, H.: Random matrix approach to cross correlations in financial data. Phys. rev. E 65, No. 6, 066126 (2002)
[21] Sear, R.; Cuesta, J.: Instabilities in complex mixtures with a large number of components. Phys. rev. Lett. 91, No. 24, 245701 (2003)
[22] Silverstein, J. W.: The smallest eigenvalue of a large dimensional Wishart matrix. Ann. probab. 13, No. 4, 1364-1368 (1985) · Zbl 0591.60025
[23] Silverstein, J. W.: Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. multivariate anal. 55, No. 2, 331-339 (1995) · Zbl 0851.62015
[24] Silverstein, J. W.; Bai, Z. D.: On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. multivariate anal. 54, No. 2, 175-192 (1995) · Zbl 0833.60038
[25] Silverstein, J. W.; Choi, S. I.: Analysis of the limiting spectral distribution of large dimensional random matrices. J. multivariate anal. 54, No. 2, 295-309 (1995) · Zbl 0872.60013
[26] Soshnikov, A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. statist. Phys. 108, No. 5 -- 6, 1033-1056 (2002) · Zbl 1018.62042
[27] Telatar, E.: Capacity of multi-antenna Gaussian channels. European trans. Telecommunications 10, No. 6, 585-595 (1999)
[28] Tracy, C.; Widom, H.: Level spacing distributions and the Airy kernel. Comm. math. Phys. 159, 33-72 (1994) · Zbl 0789.35152
[29] Tracy, C.; Widom, H.: On orthogonal and symplectic matrix ensembles. Comm. math. Phys. 177, 727-754 (1996) · Zbl 0851.60101
[30] Wachter, K. W.: The strong limits of random matrix spectra for sample matrices of independent elements. Ann. probab. 6, 1-18 (1978) · Zbl 0374.60039
[31] Yin, Y. Q.: Limiting spectral distribution for a class of random matrices. J. multivariate anal. 20, 50-68 (1986) · Zbl 0614.62060
[32] Yin, Y. Q.; Bai, Z. D.; Krishnaiah, P. R.: On limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. theory related fields 78, 509-521 (1988) · Zbl 0627.62022