×

zbMATH — the first resource for mathematics

The blocks of finite general linear and unitary groups. (English) Zbl 0507.20007

MSC:
20C20 Modular representations and characters
20C30 Representations of finite symmetric groups
20G05 Representation theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alperin, J.: Large abelian subgroups ofp-groups. Trans. Amer. Math. Soc.117, 10-20 (1965) · Zbl 0132.27204
[2] Brauer, R.: Zur Darstellungstheorie der Gruppen endlicher Ordnung. (I) Math. Z.63, 406-444 (1956); (II) Math. Z.72, 25-46 (1959) · Zbl 0093.03101 · doi:10.1007/BF01187950
[3] Brauer, R.: On blocks and sections. (I) Amer. J. Math.89, 1115-1136 (1967); (II) Amer. J. Math. 90, 895-925 (1968) · Zbl 0174.05401 · doi:10.2307/2373422
[4] Brauer, R.: On the structure of blocks of characters of finite groups, Proc. Second Internat. Conf. Theory of Groups, Canberra 1973, pp. 103-130
[5] Curtis, C.W.: Reduction theorems for characters of finite groups of Lie type. J. Math. Soc. Japan27, 666-688 (1975) · Zbl 0382.20007 · doi:10.2969/jmsj/02740666
[6] Dade, E.C.: Blocks with cyclic defect groups. Annals Math.84, 20-48 (1966) · Zbl 0163.27202 · doi:10.2307/1970529
[7] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Annals Math.103, 103-161 (1976) · Zbl 0336.20029 · doi:10.2307/1971021
[8] Farahat, H.: On the representations of the symmetric group. Proc. London Math. Soc.4, 303-316 (1954) · Zbl 0058.25905 · doi:10.1112/plms/s3-4.1.303
[9] Feit, W.: The representation theory of finite groups. North Holland 1982 · Zbl 0493.20007
[10] Green, J.A.: The characters of the finite general linear groups. Trans. Amer. Math. Soc.80, 402-447 (1955) · Zbl 0068.25605 · doi:10.1090/S0002-9947-1955-0072878-2
[11] Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations. Invent. Math.41, 113-127 (1977) · Zbl 0389.20037 · doi:10.1007/BF01418371
[12] Ito, N.: On the degrees of irreducible representations of a finite group. Nagoya Math. J.3, 5-6 (1951) · Zbl 0044.01303
[13] James, G.: The representation theory of the symmetric group. Lecture Notes in Math., Vol. 682. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0393.20009
[14] James, G., Kerber, A.: The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, Vol. 16. Addison-Wesley 1981 · Zbl 0491.20010
[15] Lusztig, G.: On the finiteness of the number of unipotent classes. Invent. Math.34, 201-213 (1976) · Zbl 0371.20039 · doi:10.1007/BF01403067
[16] Lusztig, G.: Representations of finite classical groups. Invent. Math.43, 125-175 (1977) · Zbl 0372.20033 · doi:10.1007/BF01390002
[17] Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups. J. Algebra49, 167-171 (1977) · Zbl 0384.20008 · doi:10.1016/0021-8693(77)90277-0
[18] Nakayama, T.: On some modular properties of irreducible representations of a symmetric group. (I) Jap. J. Math.17, 89-108 (1940); (II) Jap. J. Math.17, 411-423 (1941)
[19] Olsson, J.: On the blocks ofGL(n, q). (I) Trans. Amer. Math. Soc.222, 143-156 (1976) · Zbl 0376.20028
[20] Reynolds, W.: Blocks and normal subgroups of finite groups. Nagoya Math. J.22, 15-32 (1963) · Zbl 0131.26301
[21] Srinivasan, B.: Representations of finite chevalley groups. Lecture Notes in Math. Vol. 764. Berlin-Heidelberg-New York: Springer 1979 · Zbl 0434.20022
[22] Wall, G.E.: On the conjugacy classes in the unitary, symplectic, and orthogonal groups. J. Australian Math. Soc.3, 1-62 (1963) · Zbl 0122.28102 · doi:10.1017/S1446788700027622
[23] Weir, A.: Sylowp-subgroups of the classical groups over finite fields with characteristic prime top. Proc. Amer. Math. Soc.6, 529-533 (1955) · Zbl 0065.01203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.