×

zbMATH — the first resource for mathematics

Convergence of balayage measures. (English) Zbl 0507.31003

MSC:
31D05 Axiomatic potential theory
31B25 Boundary behavior of harmonic functions in higher dimensions
28C99 Set functions and measures on spaces with additional structure
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bliedtner, J., Hansen, W.: Cones of hyperharmonic functions. Math. Z.151, 71-87 (1976) · Zbl 0327.31015
[2] Constantinescu, C., Cornea, A.: Potential theory on harmonic spaces. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0248.31011
[3] Effros, E.G., Kazdan, J.L.: Applications of Choquet simplexes to elliptic and parabolic boundary value problems. J. Differential Equations8, 95-134 (1970) · Zbl 0255.46018
[4] Frostman, O.: Les points irréguliers dans la théorie du potential et le critère de Wiener. Medd. Lunds Univ. Mat. Sem.4, 1-10 (1939)
[5] Hansen, W.: Fegen und Dünnheit mit Anwendungen auf die Laplace- und Wärmeleitungsgleichung. Ann. Inst. Fourier21, 79-121 (1971) · Zbl 0205.42704
[6] Hyvönen, J.: On the harmonic continuation of bounded harmonic functions. Math. Ann.245, 151-157 (1979) · Zbl 0408.31007
[7] Köhn, J., Sieveking, M.: Reguläre und extremale Randpunkte in der Potentialtheorie. Rev. Roum. Math. Pures Appl.12, 1489-1502 (1967) · Zbl 0158.12804
[8] Luke?, J., Malý, J.: On the boundary behaviour of the Perron generalized solution. Math. Ann.257, 355-366 (1981) · Zbl 0461.31003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.