Miller, Sanford S.; Mocanu, Petru T. Univalent solutions of Briot-Bouquet differential equations. (English) Zbl 0507.34009 J. Differ. Equations 56, 297-309 (1985). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 77 Documents MSC: 34M99 Ordinary differential equations in the complex domain Keywords:differential subordinations; integral operators; univalent functions; Briot-Bouquet differential equations; univalent solution × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bajpai, S. K.: An analogue of R. J. libera’s result. Rend. mat. (7) 12, 285-289 (1979) · Zbl 0445.30007 [2] Eenigenburg, P.; Miller, S.; Mocanu, P.; Reade, M.: On a briot-bouquet differential subordination, general inequalities 3. International series of numerical mathematics 64, 339-348 (1983) [3] Hille, E.: Ordinary differential equations in the complex plane. (1976) · Zbl 0343.34007 [4] Jakubowski, Z.; Kaminski, J.: On some properties of mocanu-janowski functions. Rev. roumaine math. Pures appl. 10, 1523-1532 (1978) · Zbl 0402.30011 [5] Lewandowski, Z.; Miller, S.; Zlotkiewicz, E.: Generating functions for some classes of univalent functions. Proc. amer. Math. soc. 56, 111-117 (1976) · Zbl 0298.30008 [6] Macgregor, T. H.: A subordination for convex functions of order a. J. London math. Soc. (2) 9, 530-536 (1975) · Zbl 0331.30011 [7] Marx, A.: Unteruchungen über schlicte abbildungen. Math. ann. 107, 40-67 (1932/1933) · JFM 58.0363.01 [8] Miller, S. S.; Mocanu, P. T.: Second order differential inequalities in the complex plane. J. math. Anal. appl. 65, 289-305 (1978) · Zbl 0367.34005 [9] Pommerenke, Ch: Univalent functions. (1975) · Zbl 0283.30034 [10] Ruscheweyh, S.; Singh, V.: On a briot-bouquet equation related to univalent functions. Rev. roumaine math. Pures appl. 24, 285-290 (1979) · Zbl 0401.30011 [11] Strohhäcker, E.: Beiträge zur theorie der schlicten funktionen. Math. Z. 37, 356-380 (1933) · JFM 59.0353.02 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.