zbMATH — the first resource for mathematics

Fundamental solutions of certain degenerate second-order parabolic equations. (English. Russian original) Zbl 0507.35045
Math. Notes 31, 283-289 (1982); translation from Mat. Zametki 31, 559-570 (1982).

35K65 Degenerate parabolic equations
35K10 Second-order parabolic equations
35A08 Fundamental solutions to PDEs
Full Text: DOI
[1] A. N. Kolmogorov, ?Zufällige Bewegungen,? Ann. Math. (2),35, 116-117 (1934). · JFM 60.1159.01 · doi:10.2307/1968123
[2] I. M. Sonin, ?On a class of degenerate diffusion processes,? Teor. Veroyatn. Ee Primen.,12, No. 3, 540-547 (1967). · Zbl 0183.19901
[3] L. Hörmander, ?Hypoelliptic second-order differential equations,? Acta Math.,119, Nos. 3-4, 147-171 (1967). · Zbl 0156.10701 · doi:10.1007/BF02392081
[4] L. P. Kuptsov, ?On Harnack’s inequality for generalized solutions of second-order degenerate elliptic equations,? Differents. Uravn.,4, No. 1, 110-122 (1968).
[5] Ya. I. Shatyro, ?On the smoothness of the solutions of certain degenerate second-order equations,? Mat. Zametki,10, No. 1, 101-112 (1971).
[6] L. P. Kuptsov, ?On the fundamental solutions of a certain class of elliptic?parabolic second-order equations,? Differents. Uravn.8, No. 9, 1649-1660 (1972).
[7] L. P. Kuptsov, ?A mean value theorem and a maximum principle for a Kolmogorov equation,? Mat. Zametki,15, No. 3, 479-489 (1974).
[8] L. P. Kuptsov, ?A mean property and a maximum principle for second-order parabolic equations,? Dokl. Akad. Nauk SSSR,242, No. 3, 529-532 (1978). · Zbl 0436.35040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.