×

zbMATH — the first resource for mathematics

Continuity of the Radon transform and its inverse on Euclidean space. (English) Zbl 0507.46036

MSC:
46F12 Integral transforms in distribution spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)
45H05 Integral equations with miscellaneous special kernels
58J40 Pseudodifferential and Fourier integral operators on manifolds
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ehrenpreis, L.: Fourier Analysis in Several Complex Variables. New York: Wiley 1970 · Zbl 0195.10401
[2] Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions V. New York: Academic Press 1966
[3] Gröbner, W., Hofreiter, N.: Integraltafel; Erster und Zweiter Teil. Wien: Springer 1950/57
[4] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1955) · Zbl 0123.30301
[5] Guillemin, V., Sternberg S.: Geometric Asymptotics. Providence, Rhode Island: Amer. Math. Soc. 1977 · Zbl 0364.53011
[6] Guillemin, V.: The Radon transform on Zoll surfaces. Adv. in Math.22, 85-119 (1976) · Zbl 0353.53027 · doi:10.1016/0001-8708(76)90139-0
[7] Hacaturov, A.A.: Determination of the value of the measure for a region ofn-dimensional Euclidean space from its values in half-spaces. Uspehi Mat. Nauk9, 205-212 (1954)
[8] Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math.113, 153-180 (1965) · Zbl 0163.16602 · doi:10.1007/BF02391776
[9] Helgason, S.: The surjectivity of invariant differential operators on symmetric spaces I. Ann. of Math.98, 451-479 (1973) · Zbl 0274.43013 · doi:10.2307/1970914
[10] Helgason, S.: The Radon Transform. Boston: Birkhäuser 1980 · Zbl 0453.43011
[11] Helgason, S.: Ranges of Radon transforms. Proc. Symposia Appl. Math. Vol. 27. Providence, Rhode Island: Amer. Math. Soc. 1983 · Zbl 0534.44003
[12] Herman, G.T., Natterer, F.: Mathematical Aspects of Computerized Tomography. Lecture Notes in Med. Inform.8. Berlin-Heidelberg-New York: Springer 1981
[13] Hertle, A.: Zur Radon-Transformation von Funktionen und Maßen. Thesis, Erlangen 1979
[14] Hertle, A.: A characterization of Fourier and Radon transforms on Euclidean space. Trans. Amer. Math. Soc.273, 595-607 (1982) · Zbl 0569.44004 · doi:10.1090/S0002-9947-1982-0667162-6
[15] John, F.: Bestimmung einer Funktion aus ihren Integralen über gewisse Mannigfaltigkeiten. Math. Ann.109, 488-520 (1934) · JFM 60.1066.01 · doi:10.1007/BF01449151
[16] John, F.: Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion. Math. Ann.111 541-559 (1935) · Zbl 0012.25402 · doi:10.1007/BF01472237
[17] John, F.: Plane Waves and Spherical Means. New York: Wiley 1955 · Zbl 0067.32101
[18] Komatsu, H.: Ultradistributions I. J. Fac. Sci. Univ. Tokyo, Sect. IA Math.20, 25-105 (1973)
[19] Kostelyantes, P.O., Reshetnyak, Yu.G.: The determination of a fully additive function from its values in half-spaces. Uspehi Mat. Nauk9, 135-141 (1954)
[20] Louis, A.K.: Picture reconstruction from projections in restricted range. Math. Methods Appl. Sci.2, 209-220 (1980) · Zbl 0457.65081 · doi:10.1002/mma.1670020207
[21] Ludwig, D.: The Radon transform on Euclidean space. Comm. Pure Appl. Math.19, 49-81 (1966) · Zbl 0134.11305 · doi:10.1002/cpa.3160190105
[22] Natterer, F.: The finite element method for ill-posed problems. RAIRO Anal. Numér.11, 271-278 (1977) · Zbl 0369.65012
[23] Natterer, F.: A Sobolev space analysis of picture reconstruction. SIAM J. Appl. Math.39, 402-411 (1980) · Zbl 0446.68077 · doi:10.1137/0139034
[24] Quinto, E.T.: The dependence of the generalized Radon transform on defining measures. Trans. Amer. Math. Soc.257, 331-346 (1980) · Zbl 0471.58022 · doi:10.1090/S0002-9947-1980-0552261-8
[25] Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Abh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl.69 262-277 (1917) · JFM 46.0436.02
[26] Schwartz, L.: Produits tensoriels topologiques d’espaces vectoriels topologiques. Séminaire Schwartz, Année 1953/54. Paris: Faculté de Sciences de Paris, secrétariat mathématique 1954
[27] Schwartz, L.: Théorie des distributions à valeurs vectorielles I. Ann. Inst. Fourier (Grenoble)7, 1-130 (1957)
[28] Schwartz, L.: Théorie des distributions. Paris: Hermann 1966
[29] Smith, K.T., Solmon, D.C., Wagner, S.L.: Practical and mathematical aspects of the problem of reconstructing objects from radiographs. Bull. Amer. Math. Soc.83, 1227-1270 (1977) · Zbl 0521.65090 · doi:10.1090/S0002-9904-1977-14406-6
[30] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press 1970 · Zbl 0207.13501
[31] Strichartz, R.S.:L p estimates for Radon transforms in Euclidean and non-Euclidean spaces. Duke Math. J.48, 699-727 (1981) · Zbl 0477.44003 · doi:10.1215/S0012-7094-81-04839-0
[32] Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Oxford: Clarendon Press 1937 · Zbl 0017.40404
[33] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North-Holland 1978 · Zbl 0387.46032
[34] de Wilde, M.: Closed Graph Theorems and Webbed Spaces. London: Pitman 1978 · Zbl 0373.46007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.