×

zbMATH — the first resource for mathematics

On ideals and Lie ideals of compact operators. (English) Zbl 0507.47028

MSC:
47L30 Abstract operator algebras on Hilbert spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Fong, C.K., Miers, C.R., Sourour, A.R.: Lie and Jordan ideals of operators on Hilbert space. Proc. Am. Math. Soc.84, 516-520 (1982) · Zbl 0509.47035
[2] Fong, C.K., Nordgren, E., Radjabalipour, M., Radjavi, H., Rosenthal, P.: Extensions of Lomonosov’s invariant subspace theorem. Acta Sci. Math. (Szeged)41, 55-62 (1979) · Zbl 0413.47004
[3] Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators, Vol. 18. Providence: Transl. Am. Math. Soc. 1969 · Zbl 0181.13504
[4] Nordgren, E., Radjabalipour, M., Radjavi, H., Rosenthal, P.: Algebras intertwining compact operators. Acta Sci. Math. (Szeged)39, 115-119 (1977) · Zbl 0355.47010
[5] Radjavi, H., Rosenthal, P.: Invariant subspaces. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0269.47003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.