×

The Lyapunov method for semigroups of nonlinear contractions in Banach spaces. (English) Zbl 0507.47042


MSC:

47H20 Semigroups of nonlinear operators
47H06 Nonlinear accretive operators, dissipative operators, etc.
47J05 Equations involving nonlinear operators (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] N. D. Alikakos,L p bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations4 (1979), 827–868. · Zbl 0421.35009
[2] J. M. Ball,Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc.63 (1977), 370–373. · Zbl 0353.47017
[3] V. Barbu,Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leiden, 1976. · Zbl 0328.47035
[4] V. Barbu,Differential perturbations of nonlinear m-accretive operators in Banach spaces, Boll. Un. Mat. Ital.6 (1972), 270–278. · Zbl 0256.47053
[5] P. Benilan,Operateurs accrétifs et semi-groups dans les espaces L p, Functional Analysis and Numerical Analysis France-Japan Seminar, H. Fujita (ed.), Tokyo, 1978.
[6] P. Benilan and M. G. Crandall,The continuous dependence on of solutions of u t (u)=0, MRC Technical Summary Report 1942, 1979.
[7] H. Brezis,Opérateurs Maximaux Monotones et Semigroups de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[8] H. Brezis and A. Friedman,Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., to appear.
[9] H. Brezis and W. Strauss,Semi-linear second-order elliptic equations in L 1. J. Math. Soc. Japan25 (1973), 565–590. · Zbl 0278.35041
[10] M. G. Crandall,An introduction to evolution governed by accretive operators, inDynamical Systems–An Inter. Symp., L. Cesari, J. Hale and J. LaSalle (eds.), Academic Press, New York, 1976, pp. 131–165.
[11] M. G. Crandall and T. Liggett,Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math.93 (1971), 265–298. · Zbl 0226.47038
[12] M. G. Crandall and A. Pazy,Semigroups of nonlinear contractions and dissipative sets, J. Functional Analysis3 (1969), 376–418. · Zbl 0182.18903
[13] L. C. Evans,Application of nonlinear semigroup theory to certain partial differential equations, Proc. Symp. Nonlinear Evolution Equations, M. G. Crandall (ed.), Academic Press, New York, 1978, pp. 163–188. · Zbl 0471.35039
[14] L. C. Evans,Regularity properties for the heat equation subject to nonlinear boundary constraints, Nonlinear Analysis TMA1 (1977), 593–602. · Zbl 0369.35034
[15] R. H. Martin,Lyapunov functions and autonomous differential equations in a Banach space, Math. Systems Theory7 (1973), 66–72. · Zbl 0258.34054
[16] A. Pazy,Semigroups of nonlinear contractions and their asymptotic behaviour, inNonlinear Analysis and Mechanics, Heriot-Watt Symp. Vol. III, R. J. Knops (ed.), Pitman Research Notes in Math.30 (1979), 36–134.
[17] L. Véron,Effects regularisants de semi-groupes non linéaires dans les espaces de Banach, Annales Fac. des Sciences Toulouse1 (1979), 171–200.
[18] L. Véron,Coercivité et propriétés régularisantes des semi-groups non linéaires dans les espaces de Banach, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.