Age-dependent predation is not a simple process. I. Continuous time models. (English) Zbl 0507.92016


92D25 Population dynamics (general)
Full Text: DOI


[1] Cooke, K.; Grossman, Z., Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl, 86, 592-627 (1982) · Zbl 0492.34064
[2] Cushing, J., Stability and maturation periods in age structured populations, (Proc. Conf. on Diff. Eq. in Biology (1982), Academic Press: Academic Press New York) · Zbl 0484.92022
[3] Cushing, J.; Saleem, M., A predator-prey model with age structure, J. Math. Biol, 14, 231-250 (1982) · Zbl 0501.92018
[4] Dayton, P., Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community, Ecol. Monogr, 41, 351-389 (1971)
[5] El’sgol’ts, L. E.; Norkin, S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments (1973), Academic Press: Academic Press New York · Zbl 0287.34073
[6] Gazis, D. C.; Montroll, E. W.; Ryniker, J. E., Age-specific, deterministic model of predator prey populations: Application to Isle Royale, IBM J. Res. Dev, 17, 47-53 (1973)
[7] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series and Products (1980), Academic Press: Academic Press New York · Zbl 0521.33001
[8] Gurtin, M. E.; Levine, D. S., On predator-prey interactions with predation dependent on age of prey, Math. Biosci, 47, 207-219 (1979) · Zbl 0435.92023
[9] Jordan, P. A.; Botkin, D. B.; Wolfe, M. L., Biomass dynamics in a moose population, Ecology, 52, 147 (1971)
[10] Le Cren, E. D.; Kipling, C.; McCormack, J. C., A study of the numbers, biomass and year-class strengths of perch (Perca fluviatilis L.) in Windemere from 1941 to 1966, J. Anim. Ecol, 46, 281-307 (1977)
[11] Lloyd, M.; Dybas, H. S., The periodical cicada problem, Evolution, 20, 466-505 (1966)
[12] May, R., Stability and Complexity in Model Ecosystems (1974), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J
[13] May, R.; Leonard, W. J., Nonlinear aspects of competition between three species, SIAM J. Appl. Math, 29, 243-253 (1975) · Zbl 0314.92008
[14] Maynard Smith, J.; Slatkin, M., The stability of predator prey systems, Ecology, 54, 384-391 (1973)
[15] McDonald, N., Time delay in predator-prey models, Math. Biosci, 28, 321-330 (1976) · Zbl 0324.92016
[16] McDonald, N., Time Lags in Biological Models (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0403.92020
[17] Murdoch, W.; Oaten, A., Predation and population stability, Advan. Ecol. Res, 9, 1-125 (1975)
[18] Nielsen, L., Effect of Walleye (Stizostedion vitreum vitreum) predation on juvenile mortality and recruitment of yellow perch (Perca flavescens) in Oneida Lake, New York, Canad. J. Fish. Aquat. Sci, 37, 11-19 (1980)
[19] Paine, R., Natural history, limiting factors and energetics of the opisthobranch Navanax inermis, Ecology, 46, 603-619 (1965)
[20] Slobodkin, L., Prudent predation does not require group selection, Amer. Natur, 108, 665-678 (1974)
[21] Smith, R. H.; Mead, R., Age structure and stability in models of predator-prey systems, Theor. Pop. Biol, 6, 308-322 (1974)
[22] Wilbur, H., Complex life cycles, Ann. Rev. Ecol. Syst, 11, 67-93 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.