zbMATH — the first resource for mathematics

AntPart: an algorithm for the unsupervised classification problem using ants. (English) Zbl 1103.68742
Summary: Unsupervised classification is one of the tasks of data-mining. In this paper, a method named AntPart for the resolution of exclusive unsupervised classification is introduced. It is inspired by the behavior of a particular species of ants called Pachycondyla apicalis. The performances of this method are compared with those of three other ones, also inspired by the social behavior of ants: AntClass, AntTree and AntClust.
68T10 Pattern recognition, speech recognition
68W05 Nonnumerical algorithms
AntClust; AntPart
Full Text: DOI
[1] Fayyad, U.M.; Piatesky-Shapiro, G.; Smyth, P.; Uthurusamy, R., Advances in knowledge discovery and data-mining, (1996), AAAI Press/MIT Press
[2] Gardarain, G., Bases de données objet et relationnelles, (1999), Eyrolles
[3] Jambu, M., Introduction au data-mining, (1999), Eyrolles
[4] Ferber, J., LES systèmes multi agents, (1995), Inter-Editions France · Zbl 0871.68023
[5] J.C. Bezdek, S. Boggavarapu, L. Hall, A. Bensaid, Genetic algorithm guided clustering, in: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, pp. 34-39.
[6] W.A. Greene, Unsupervised hierarchical clustering via a genetic algorithm, in: IEEE Press, Editor, Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, 2003, pp. 998-1005.
[7] M. Dorigo, Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano, Italy, 1992.
[8] Bonabeau, E.; Dorigo, M.; Théraulaz, G., Swarm intelligence: from natural to artificial systems, (1999), Oxford University Press New York · Zbl 1003.68123
[9] Dorigo, M.; Dicaro, G., Ant colony optimisation: A new meta-heuristic, Ieee, (1999)
[10] T. Knight, J. Timmis, On data clustering with artificial ants, in: Proceedings of the 4th International Conference on Recent Advances in Soft Computing, Nottingham, UK, 2002, pp. 266-271.
[11] L. Admane, K. Benatchba, M. Koudil, H. Drias, Evolutionary methods for solving data-mining problems, in: IEEE International Conference on Systems, Man & Cybernetics, Netherlands, October 2004.
[12] K. Benatchba, L. Admane, M. Koudil, H. Drias, Application of ant colonies to data-mining expressed as Max-Sat problems, in: International Conference on Mathematical Methods for Learning, MML’2004, Italy.
[13] Benatchba, K.; Admanem, L.; Koudil, M., Using bees to solve a data-mining problem expressed as a MAX-sat one, International work-conference on the interplay between natural and artificial computation, lecture notes in computer science, (2005), Springer-Verlag Berlin
[14] E. Lumer, B. Faieta, Diversity and adaptation in populations of clustering ants, in: Cli et al., 1994, pp. 501-508.
[15] G. Saarenvirta, Intelligent Miner for Data Applications Guide, SG24-5252-00, IBM Redbook, 1999.
[16] N. Monmarché, Algorithmes de fourmis artificielles: application à l’optimisation et la classification. PhD Thesis, University of Tours, France, 2000.
[17] Lefébure, R.; Venturi, G., Data mining: gestion de la relation client, personnalisation de sites web, (1998), Eyrolles
[18] H. Azzag, N. Monmarché, M. Slimane, C. Guinot, G. Venturini, AntTree: a new model for clustering with artificial ants, in: 7th European Conference on Artificial Life (ECAL 2003), Dortmund, Germany, September 14-17, 2003.
[19] N. Labroche, N. Monmarché, G. Venturini, AntClust: ant clustering and web usage mining, in: Proceeding of the Genetic and Evolutionary Computation, (Gecco 2003), Chicago, USA, July 2003. · Zbl 1028.68819
[20] N. Labroche, N. Monmarché, G. Venturini, Modélisation de la fermeture coloniale chez les fourmis pour la classification non supervisée, Conférence d’apprentissage (CAP 2002), Orléans, France, pp. 137-148, 2002.
[21] H. Azzag, N. Monmarché, M. Slimane, C. Guinot, G. Venturini, Algorithme AntTree: Classification non supervisée par des fourmis artificielles, XXXV Journée de Statistique, 2-6 juin, Lyon, Revue des Nouvelles Technologies de l’Information, Cépaduès, 2003.
[22] Blake, C.; Merz, C., CI repository of machine learning databases, (1998), Department of Information and Computer Sciences, University of California Irvine
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.