×

zbMATH — the first resource for mathematics

Wiener’s criterion for the heat equation. (English) Zbl 0508.35038

MSC:
35K05 Heat equation
35A30 Geometric theory, characteristics, transformations in context of PDEs
31B25 Boundary behavior of harmonic functions in higher dimensions
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Bauer, Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics, 22, Springer (1966).
[2] J. L. Doob, A probability approach to the heat equation. Trans. A.M.S., 80 (1955), 216–280. · Zbl 0068.32705
[3] E. G. Effros & J. L. Kazdan, Applications of Choquet simplexes to elliptic and parabolic boundary value problems. J. Diff. Eq., 8 (1970), 95–134. · Zbl 0255.46018
[4] E. G. Effros & J. L. Kazdan, On the Dirichlet problem for the heat equation. Indiana U. Math. J., 20 (1971), 683–693. · Zbl 0216.12702
[5] E. Lanconelli, Sul problema di Dirichlet per 1’equazione del calore. Ann. Math. Pura Appl., 97 (1973), 83–114. · Zbl 0277.35058
[6] E. M. Landis, Necessary and sufficient conditions for regularity of a boundary point in the Dirichlet problem for the heat-conduction equation. Soviet Math., 10 (1969), 380–384. · Zbl 0187.03803
[7] W. Littman, G. Stampacchia & H. Weinberger, Regular points for elliptic equations with discontinuous coefficients. Ann. Sc. Norm. Sup. Pisa, 17 (1963), 45–79. · Zbl 0116.30302
[8] J. Moser, On a pointwise estimate for parabolic differential equations. Comm. Pure Appl. Math., 24 (1971), 727–740. · Zbl 0227.35016
[9] S. Orey, Probabilistic methods in partial differential equations. Preprint. · Zbl 0588.35086
[10] I. Petrovsky, Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compositio Math., 1 (1935), 383–419. · Zbl 0010.29903
[11] M. Pierre, Problèmes d’évolution avec constraintes unilaterales et potentiels paraboliques. Comm. Partial Diff. Eq. 4 (1979), 1149–1197. · Zbl 0426.31005
[12] N. A. Watson, Thermal capacity. Proc. London Math. Soc., 37 (1978), 342–362. · Zbl 0395.35034
[13] N. A. Watson, A theory of subtemperatures in several variables. Proc. London Math. Soc., 26 (1973), 385–417. · Zbl 0253.35045
[14] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc., 33 (1976), 251–297; and Corrigendum. Proc. London Math. Soc., 37 (1978), 32–34. · Zbl 0336.35046
[15] N. Wiener, The Dirichlet problem. J. Math. and Phys., 3 (1924), 127–146. · JFM 51.0361.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.