Fixed points of pseudo-Anosov diffeomorphisms of surfaces. (English) Zbl 0508.55001


55M20 Fixed points and coincidences in algebraic topology
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)


Zbl 0496.57003
Full Text: DOI


[1] Brown, R., The Lefschetz Fixed Point Theorem (1971), Scott, Foresman: Scott, Foresman Glenview, Ill · Zbl 0216.19601
[2] Gilman, J., On the Nielsen type and the classification for the mapping class group, Advan. in Math., 40, 68-96 (1981) · Zbl 0474.57005
[3] Jiang, B.-T, Estimation of the Nielsen numbers, Chinese Math., 5, 330-339 (1964)
[4] Nielsen, J., Untersuchung zur Topologie der geschlossenen zweiseitigen Flächen, I, II, III, Acta Math., 58, 87-167 (1932) · JFM 58.0613.01
[5] Nielsen, J., Surface transformation classes of algebraically finite type, Det Kgl. Danske Vidensk. Selskab Math. Fys. Medd., 21, 2, 1-89 (1944)
[6] Miller, R., Nielsen’s viewpoint on geodesic laminations, Advances in Math., 45, 189-212 (1982) · Zbl 0496.57003
[7] (Fathi, A.; Laudenbach, F.; Poénaru, V., Travaux de Thurston sur les surfaces, Orsay Séminaire. Travaux de Thurston sur les surfaces, Orsay Séminaire, Astérisque, 66-67 (1979))
[9] Wecken, F., Fixpunktklassen I, Math. Ann., 117, 659-671 (1941) · JFM 67.1093.02
[10] Wecken, F., Fixpunktklassen II, Math. Ann., 118, 216-254 (1942) · JFM 67.1094.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.