×

zbMATH — the first resource for mathematics

Exponential dichotomies and transversal homoclinic points. (English) Zbl 0508.58035

MSC:
37G99 Local and nonlocal bifurcation theory for dynamical systems
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
34D05 Asymptotic properties of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anosov, D. V.: English transl. Amer. math. Soc. transl.. Amer. math. Soc. transl. (1969)
[2] Arnol’d, V. I.: Instability of dynamical systems with several degrees of freedom. Sov. math. Dokl. 5, 581-585 (1964) · Zbl 0135.42602
[3] Arnol’d, V. I.; Avez, A.: Ergodic problems of classical mechanics. (1968) · Zbl 0167.22901
[4] Bowen, R.: On axiom A diffeomorphisms. NSF-CBMS regional conf. Series, no. 35 (1978) · Zbl 0383.58010
[5] Chow, S. N.; Hale, J. K.; Mallet-Paret, J.: An example of bifurcation to homoclinic orbits. J. differential equations 37, 351-373 (1980) · Zbl 0439.34035
[6] Chow, S. N.; Hale, J. K.: Methods of bifurcation theory. (1982) · Zbl 0487.47039
[7] Conley, C. C.: Hyperbolic invariant sets and shift automorphisms. Lecture notes in physics no. 38, 539-549 (1975)
[8] Coppel, W. A.: Perturbation of periodic solutions: the degenerate case. Proc. internat. Sympos. nonlinear vibrations, 190-194 (1963) · Zbl 0131.08702
[9] Coppel, W. A.: Stability and asymptotic behavior of differential equations. (1965) · Zbl 0154.09301
[10] Coppel, W. A.: Dichotomies in stability theory. Lecture notes in mathematics no. 629 (1978) · Zbl 0376.34001
[11] Franke, J.; Selgrade, J.: Hyperbolicity and chain recurrence. J. differential equations 26, 27-36 (1977) · Zbl 0329.58012
[12] Hale, J. K.: Ordinary differential equations. (1969) · Zbl 0186.40901
[13] Holmes, P.: A nonlinear oscillator with a strange attractor. Philos. trans. Roy. soc. London ser. A 292, 419-448 (1979) · Zbl 0423.34049
[14] Holmes, P.: Averaging and chaotic motions in forced oscillations. SIAM J. Appl. math. 38, 65-80 (1980) · Zbl 0472.70024
[15] Kirchgraber, U.: Erratiche lösungen der periodisch gestörten pendulgleichung. (1982)
[16] Knobloch, H. W.; Kappel, F.: Gewöhnliche differentialgleichungen. (1974) · Zbl 0283.34001
[17] Melnikov, V. K.: On the stability of the center for time periodic perturbations. Trans. Moscow math. Soc. 12, No. 1, 1-57 (1964)
[18] Millionščikov, V. M.: A proof of the attainability of the central exponents of linear systems. Siberian math. J. 10, 69-73 (1969) · Zbl 0193.04503
[19] Millionščikov, V. M.: Coarse properties of linear systems of differential equations. Differential equations 5, 1314-1321 (1969)
[20] Moser, J.: Stable and random motions in dynamical systems. (1973) · Zbl 0271.70009
[21] Palmer, K. J.: Averaging and integral manifolds (II). Bull. austral. Math. soc. 2, 369-400 (1970) · Zbl 0191.10303
[22] Robinson, C.: Stability theorems and hyperbolicity in dynamical systems. Rocky mountain J. Math. 7, 425-437 (1977) · Zbl 0375.58016
[23] Sacker, R. J.: The splitting index for linear differential systems. J. differential equations 33, 368-405 (1979) · Zbl 0438.34008
[24] Smale, S.: Differentiable dynamical systems. Bull. amer. Math. soc. 73, 747-817 (1967) · Zbl 0202.55202
[25] Holmes, P.; Marsden, J.: A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. rational mech. Anal. 76, 135-166 (1981) · Zbl 0507.58031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.