zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. (English) Zbl 0508.65045

65L15Eigenvalue problems for ODE (numerical methods)
34L99Ordinary differential operators
Full Text: DOI
[1] Chaves, T., Ortiz, E. L.: On the numerical solution of two point boundary value problems for linear differential equations. Z. angew. Math.48, 415--418 (1968). · Zbl 0172.19601
[2] Collatz, L.: Eigenwertaufgaben mit technischen Anwendungen Leipzig: Akademische Verlagsgesellschaft Geest & Portig K. G. 1963. · Zbl 0035.17504
[3] Fox, L.: Numerical methods for boundary value problems. In: Computational Techniques for Ordinary Differential Equations (Gladwell, I., Sayers, D. K., eds.). London: Academic Press 1980.
[4] Liu, K. M., Ortiz, E. L.: Approximation of eigenvalues defined by ordinary differential equations with the Tau method. In: Matrix Pencils (Kågström, B., Ruhe, A., eds.). LNM, nr. 973. Berlin-Heidelberg-New York: Springer 1982.
[5] Ortiz, E. L.: The Tau method. SIAM J. Numer. Anal.6, 480--492 (1969). · Zbl 0195.45701 · doi:10.1137/0706044
[6] Ortiz, E. L.: Canonical polynomials in the Lanczos’ Tau method. In: Studies in Numerical Analysis (Scaife, S. P. K., ed.), pp. 73--93. New York: Academic Press 1974. · Zbl 0325.41004
[7] Ortiz, E. L., Samara, H.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing27, 15--25 (1981). · Zbl 0449.65053 · doi:10.1007/BF02243435