Canuto, C. A finite element to interpolate symmetric tensors with divergence in \(L^ 2\). (English) Zbl 0508.65051 Calcolo 17, 293-312 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions Keywords:finite element; biharmonic equation; second order symmetric tensor fields Citations:Zbl 0362.65089 PDF BibTeX XML Cite \textit{C. Canuto}, Calcolo 17, 293--312 (1981; Zbl 0508.65051) Full Text: DOI OpenURL References: [1] F. Brezzi,On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O. R2 (1974), 129–151. · Zbl 0338.90047 [2] F. Brezzi,Sur la méthode des éléments finis hybrides pour le problème biharmonique, Num. Math.24 (1975), 103–131. · Zbl 0316.65029 [3] F. Brezzi–L. D. Marini,On the numerical solution of plate bending problems by hybrid methods, R.A.I.R.O. R3 (1975), 5–50. · Zbl 0322.73048 [4] C. Canuto,A hybrid finite element method to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Num. An.,15 (1981). · Zbl 0462.73049 [5] M. Fortin,Résolution numérique des équations de Navier-Stokes par des éléments finis de type mixte, Rapport de Récherche I.R.I.A. n. 184 (1976). [6] P. A. Raviart–J. M. Thomas,A mixed finite element method for 2nd order elliptic problems, Lect. Notes in Math. 505 (1977), Springer, Berlin-Heidelberg-New York. · Zbl 0362.65089 [7] J. M. Thomas,Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes, Thèse à l’Université Pierre et Marie Curie (1977), Paris. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.